Inverse Problems in Underwater Acoustics Springer Science+Business Media, LLC Michael 1. Taroudakis George Makrakis Editors Inverse Problems in Underwater Acoustics With 76 Figures Springer MichaelI. Taroudakis George N.Makrakis DepartmentofMathematics Applied and Computational Mathematics University of Crete Foundation 71409 Heraklion- Crete,Greece Foundation for Research andTechnology 711 10Herkalion,Greece LibraryofCongressCataloging-in-PublicationData Inverseproblemsinunderwateracoustics /editors Michael I.Taroudakis,George N.Makrakis. p. cm. Includesbibliographicalreferences and index. 1. Underwateracoustics-Mathematics. 2. Inverse problems(Differentialequations) I. Taroudakis,MichaelI. II. Makrakis,G. QC242.2.158 2001 534'.23'01515353-dc21 00-069237 Printedonacid-freepaper. ©2001SpringerScienee+BusinessMediaNewYork OriginallypublishedbySpringer-VerlagNewYorkInc.in200I Softcoverreprintofthehardcover Istedition200I All rights reserved.This work may not be translated or copied in whole or in part wirbout the written permissionofthepublisher (SpringerSeience+BusinessMedia,LLC), exceptfor briefexcerptsinconnectionwithreviewsorscholarlyanalysis.Use inconnectionwithanyformofinformationstorageandretrieval,electronicadaptation,computer software,orbysimilarordissimilar methodologynowknownorhereafterdevelopedisforbidden. The use of general descriptive names,trade names,tradernarks,etc.,in thispublication, evenif theformerarenotespecially identified,isnottobetakenasasignthatsuchnames,asunderstood by theTradeMarks and Merchandise MarksAct,mayaccordinglybeused freely byanyone. Productionmanaged byAllanAbrams;manufacturingsupervisedbyJeffrey Taub. Typeset byThe Bartlett Press,Marietta,GA. 9 8 7 6 5 432 I ISBN978-1-4419-2920-4 ISBN978-1-4757-3520-8(eBook) DOI10.1007/978-1-4757-3520-8 Preface This volume summarizes some recent developments in selected applications of inverse problems in underwateracoustics.The chapters of the volume are based on presentations made during a research workshop which was held at the Insti tuteofAppliedand ComputationalMathematics,FORTH, inHeraklion,Crete on May, 1999, and itwas also sponsored bythe University of Crete.The objectives of this research workshop were tobring togetherscientists interestedinthe theo retical issues ofinverse problemsarising inscienceandengineering, with people working with specific applications in underwater acoustics, such as sea-bottom characterization, ocean acoustic tomography, and target recognition. Nowadays, an impressively large number of researchers are looking at these inverse problemsfrom differentperspectives.Theoreticians usually deal with the development of notions of solutions, which are both rigorous and appropriate to apply in the inversions of measured data, mainly studying the conditions of existence,uniqueness, and stabilityofthese solutions.Ontheotherhand, applied scientists involved in real world applications, study the conditions under which existing models can be incorporated in inversion schemes under the restrictions posed bythe technological tools. Duringseveralrecentconferencesandworkshops [Cl], [C2],[C3], [C4],[C5], [C6],[C7],itbecameapparentthat there isadifficulty inapplyingrigorousinver sionschemesinrealisticproblemsasthelatterrequire muchmoreinformationthan is available in the experiments. Moreover, new aspects appearing in the applied fieldcannotbeworked out withoutthe useofadvanced mathematicaltechniques. Therefore theoreticians and applied scientists should work togetherin orderthat the inverse problems are treated inthe most efficient way.The time für the orga nizationofthe workshopandthe publicationofthis volume isappropriateforthe following reasons: • A great amount of experimental data, related to underwateracoustic applica tions, havebeen gatheredand processedover thelast 15years. • Theprocessingofthesedatahasdemonstratedthenecessityforusingadvanced inversion schemes; as the traditional methods cannot cope with the complex nature oftheexistingdata. vi Preface • As new algorithms (such as those related to matched-field processing) are now successfully used for inverting experimental data, there is need for their evaluationinrelationtotheir mathematicaljustification. Webelievethatthisvolume containssome ofthemoreinterestingrecentresults concerningocean acoustic tomography,bottomrecognition,andinversescattering for acoustic waveguides, related totheabove-mentionedissues.Both newcomers and researchers in underwater acoustics will find clear presentations of the ba sie ideas, and useful updated references for some of the most important inverse problemsin underwateracoustics. Thestructureofthevolume isasfollowing.Chapters1-4dealwith theproblem ofgeoacousticinversions.Chapter1commentsonthequestionofwhatitispossible torecoverfromaspecificexperimentforbottomreconstruction.Chapter2presents a method for range-dependent recovery of the bottom properties. Chapter 3 is referred to the application ofthe concept ofocean acoustic tomography for the same problem, while Chapter4 presents an alternative optimizationmethod also basedontomographicconcepts. Chapter5aims at defining whethercorrelationof deconvolutionis superiorin estimatingtheimpulseresponseofanoceanicacoustic waveguide.Chapter6refers to the problem of inverting data recorded at an array of hydrophones, when the array shape is an additional unknown of the inverse problem.Chapter7 presents aspectsofamodal inversionschemeappliedinocean acoustic tomography. The last three chapters emphasize some mathematical aspects of inverse scat tering related to the acoustic waveguide which is the underlying model for the problemstreatedinthepreviouschapters. InChapter8aninverse scatteringtech nique with incomplete data is applied for the reconstruction ofthe shape ofan embeddedobject. Chapter9dealswiththetheoreticalaspects ofaninversebound aryproblemforembeddedinhomogeneities.Chapter10isacomprehensivesurvey ofmathematicalresultsconcerningtheinverseproblemfortheacousticwaveequa tioninseveraldimensions.Therelationofthetomographicdatawiththeunderlying oceanographicmodels isthoroughlyinvestigatedintheAppendix,which contains an article publishedin Ocean Modeling (Paola Malanotte-Rizzoli, Ed.),Elsevier ScienceBV,Amsterdam,pp.97-115(1996).Thisarticleprovidesthekernel ofthe ocean acoustictomographyproblemasitistraditionallyusedindata assimilation applications. References [C1] O.Diachock,A.Caiti,P.Gerstoft, andH.Schmidt(eds.).FullFieldInversion Methods in Ocean and Seismo-Acoustics.Kluwer Academic, Amsterdam, 1995. [C2] J.S. Papadakis (ed.). Proceedings ofthe Third European Conference on UnderwaterAcoustics.FORTH-IACM,Hemeklion, 1996. Preface vii [C3] R.ZhangandJ.Zhou(eds.).Shallow-WaterAcoustics. China OceanPress, Beijing, 1997. [C4] R. Chapman and A. Tolstoy (Guest eds.). Special Issue: Benchmarking geoacoustic inversionmethods.J. Comput.Acoust., 6(1&2), 1998. [CS] A. Alippi and G.B. Cannelli (eds.). Proceedings 0/the Fourth European Conference on UnderwaterAcoustics.CNR-IDAC,Rome, 1998. [C6] vc.Teng,E.-c.Shang,Y.-H.Pao,M.Schultz,andA.Pierce.Theoretical and ComputationalAcoustics '97.WorldScientific,Singapore, 1999. [C7] M. Zakharia, P. Chevret, and P. Dubail (eds.). Proceedings 0/the Fifth European Conference on Underwater Acoustics. European Communities, Luxembourg, 2000. Contents Prefaee v 1 WhatAreWeInvertingFor? DavidM.F. Chapman . . 1 1.1 Introduction . . . . . . 1 1.2 RangeandAngle . . . . 3 1.3 ReflectionCoefficientandSurfaceImpedance 4 1.4 ReflectionandImpedance ofaSimpleSeabedModel 5 1.5 EquivalentSeabedModels . . . . . . . . . . . . . . . 8 1.6 ReflectionandImpedance ofaRealisticSeabedModel 9 1.7 Conclusion . 12 1.8 References . .. . ....... . . ........... 12 2 FreezeBathInversionforEstimationofGeoaeousticParameters N.Ross ChapmanandLotharJaschke 15 2.1 Introduction . . . . . . . . . . . . 15 2.2 Geoacoustic Inversion . . . . . . . 17 2.3 Parameter UncertaintyEstimation . 19 2.4 FreezeBathInversion 21 2.5 Simulation 25 2.6 Summary . 33 2.7 References 34 3 TomographieInversionon MultipleReeeiverslArraysfrom Multiple Sources for the Estimation of Shallow Water BottomProperties AlexTolstoy . . . . 37 3.1 Introduction 37 3.2 Approach. . 40 3.3 Results . .. 42 3.4 Conclusions 44 3.5 References . 45 x Contents 4 NonlinearOptimizationTechniquesfor GeoacoosticTomography Gopu R. Potty andJames H.Miller . 47 4.1 Introduction · ........... 47 4.2 Hybrid Schemes . . . . . . . . . . 48 4.3 ShelfBreak PRIMERExperiment. 51 4.4 Inversion Using SUS Signals 52 4.5 Results andDiscussion 55 4.6 Conclusions 61 4.7 References . . . . . . . 62 5 EstimatingtheImpulseResponseoftheOcean: CorrelationVersosDeconvolution Zoi-HeleniMichalopoulou 65 5.1 Introduction · . . . . 65 5.2 Source Signals . . . . 66 5.3 Signal Deconvolution 67 5.4 CrosscorrelationinDeconvolution 69 5.5 ComparisonofDeconvolutionand Crosscorre1ation 72 5.6 SWellEX-96 Results . 74 5.7 Conclusions 74 5.8 References . . . . . . 76 6 RegularizedInversionfor Towed-ArrayShapeEstimation Stan E.DossoandNicole E. Collison 77 6.1 Introduction 77 6.2 Theory .. 80 6.3 Examples . 93 6.4 Summary . 101 6.5 References 101 7 Mode-CouplingEffectsin AcousticThermometry oftheArcticOcean AlexanderN. GavrilovandPeterN.Mikhalevsky .. . . . . . 105 · ......... . ... . . .. . . . . . 7.1 Introduction 105 7.2 The Response of Acoustic Signal Parameters to Mode Coupling ... . . ... . . . . . . . . . . . . . . . 107 7.3 Numerica1Modeling for thePathFVS-LincolnSea 112 7.4 The ExperimentalResults 122 7.5 Conclusions 123 7.6 References . . . . . . . . 125 8 On the Characterization of Objects in Shallow Water Using RigoroosInversionMethods BernardDuchene, Mare Lambert, andDominiqueLesselier . 127 8.1 Introduction · . . . . . . . .. . ... ........ 127
Description: