ebook img

Inverse Problems For Dirac Operators With a Finite Number of Transmission Conditions PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inverse Problems For Dirac Operators With a Finite Number of Transmission Conditions

INVERSE PROBLEMS FOR DIRAC OPERATORS WITH A FINITE NUMBER OF TRANSMISSION CONDITIONS 6 1 YALC¸INGU¨LDU¨ ANDMERVEARSLANTAS¸ 0 2 n Abstract. Inthispaper,weconsideradiscontinuousDiracoperatordepend- a ingpolynomiallyonthespectralparameterandafinitenumberoftransmission J conditions. We get some properties of eigenvalues and eigenfunctions. Then, we investigate some uniqueness theorems by using Weyl function and some 0 spectral data. 2 ] A C . h 1. Introduction t a Inverse problems of spectral analysis recover operators by their spectral data. m Fundamental and vast studies about the classical Sturm-Liouville, Dirac opera- [ tors,Schr¨odingerequation and hyperbolic equations are well studied (see [1-7]and 1 references therein). v Studies where eigenvalue dependent appears not only in the differential equa- 0 tion but also in the boundary conditions have increased in recent years (see [8- 2 16] and corresponding bibliography cited therein). Moreover,boundary conditions 3 which depend linearly and nonlinearly on the spectral parameter are considered 5 0 in [8,16-20] and [21-27] respectively Furthermore, boundary value problems with . transmission conditions are also increasingly studied. These types of studies in- 1 troduce qualitative changes in the exploration. Direct and inverse problems for 0 6 Sturm-Liouville and Dirac operators with transmission conditions are investigated 1 in some papers (see [7, 28–31]and references therein). Then, differential equations v: with the spectral parameter and transmission conditions arise in heat, mechanics, i mass transfer problems, in diffraction problems and in various physical transfer X problems (see [18, 28, 32-39]and corresponding bibliography). r Morerecently, someboundary value problemswith eigenparameterinboundary a and transmission conditions are spread out to the case of two, more than two or a finite number of transmission in [40-44]and references therein. The present paper deals with the discontinuous Dirac operator depending poly- nomiallyonthe spectralparameteranda finite number oftransmissionconditions. The aim of the present paper is to obtain the asymptotic formulae of eigenvalues, eigenfunctions and to prove some uniqueness theorems. Especially, some param- eters of the considered problem can be determined by Weyl function and some spectral data. 2000 Mathematics Subject Classification. Primary34A55, Secondary34B24,34L05. Keywordsandphrases. Diracoperator,Eigenvalues,Eigenfunctions,TransmissionConditions, WeylFunction. 1 2 YALC¸INGU¨LDU¨ ANDMERVEARSLANTAS¸ We consider a discontinuous boundary value problem L with function ρ(x); (1) ly :=By′(x)+Ω(x)y(x)=λρ(x)y(x), x∈∪n (ξ ,ξ )=Λ, ξ =a, ξ =b i=0 i i+1 0 n+1 ρ , a≤x<ξ 0 1 where ρ(x)= ρ , ξ <x<ξ , i=1,n−1 and ρ , i=0,n are given positive i i i+1 i  ρ , ξ <x≤b  n n p(x) q(x) real numbers;Ω(x)= ,p(x),q(x),r(x)∈L [Λ,R]; q(x) r(x) 2 (cid:18) (cid:19) 0 1 y (x) B = ,y(x)= 1 ,λ∈Cisarealspectralparameter;boundary −1 0 y (x) 2 (cid:18) (cid:19) (cid:18) (cid:19) conditions at the endpoints (2) l y :=a (λ)y (a)−a (λ)y (a)=0 1 2 2 1 1 (3) l y :=b (λ)y (b)−b (λ)y (b)=0 2 2 2 1 1 with transmission conditions at n points x=ξi, i=1,n (4) l y :=y (ξi+0)−θ y (ξ −0)=0 3 1 i 1 i (5) l y :=y (ξ +0)−θ−1y (ξ −0)−γ (λ)y (ξ −0)=0 4 2 i i 2 i i 1 i where θ , ξi i=1,n are real numbers, a (λ), b (λ),(i=1,2) and γ (λ), are real i i i i coefficients polynomials for λ. (cid:0) (cid:1) 2. Operator Formulation and Properties of Spectrum In this section, we present the space n H :=L2(Λ)⊕Cma⊕Cmb⊕ Cri wherema =max{degai(λ)},mb =max{degbi(λ)}, i=1 X r =max{degγ (λ)}. We define the norm on space H by i i b ma (6) kYk2 := ρ(x) |y (x)|2+|y (x)|2 dx+ Y1Y1 1 2 i i Za n o Xi=1 mb n n + Y2Y2+ Y3jY3j j j i i j=1 j=1i=1 X XX for Y ∈H,Y = f(x),Y1,Y2,Y3 ,Y1 = Y1,Y1,...,Y1 ,Y2 = Y2,Y2,...,Y2 , 1 2 ma 1 2 mb Y3 = Y3i,Y3i,...,Y3i i=1,n . 1 2 (cid:0) ri (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) Consider the operator T defined by the domain (cid:0) (cid:1) (cid:0) (cid:1) y (x) i) y(x)= 1 ∈AC(Λ), lf ∈L (Λ) y (x) 2 2  (cid:18) (cid:19)  D(T)=Y ∈H : iiiivi)i))yYY11(21ξ=i=+ba0m)a−2yyθ2(i(bya)1)−(−ξiba−m0ay)1y=(1b(0)a)  1 mb2 2 mb1 1  v) Y13i =γriiy1(ξi−0)  INVERSE PROBLEMS FOR DIRAC OPERATORS 3 such that TY :=W =(ly,W1,W2,W3I˙), W1 = W11,W21,...,Wm1a , W2 = W12,W22,...,Wm2b , W3I˙ = (cid:0)W13i,W23i,...,Wr3ii(cid:1),Wr3n+1 i=1,n (cid:0) (cid:1) (cid:16) (cid:17) (cid:0) (cid:1) Wi1 =Yi1+1−ama−i,2y2(a)+ama−i,1y1(a), i=1,ma−1 W1 =−a y (a)+a y (a) ma 02 2 01 1 Wj2 =Yj1+1−bmb−j,2y2(b)+bmb−j,1y1(b), j =1,mb−1 W2 =−b y (b)+b y (b) mb 02 2 01 1 W13 =YK31+1−γr1−k,1y1(ξ1−0), k =1,r1−1 W23 =YK32+1−γr2−k,2y1(ξ2−0), k =1,r2−1 . . . Wr3n =YK3n+1−γrn−k,ny1(ξn−0), k=1,rn−1 W3 =−γ y (ξ −0)+y (ξ +0)−θ−1y (ξ −0), t=1,n rn+1 0t 1 t 2 t i 2 t Thus, we can rewrite the considered problem (1)-(5) i(cid:0)n the op(cid:1)erator form as TY =λY. We define the solutions ϕ(x,λ)=ϕ (x,λ), x∈(ξ ,ξ ); ψ(x,λ)=ψ (x,λ), x∈(ξ ,ξ ) i=0,n i i i+1 i i i+1 (cid:0) (cid:1) ϕ (x,λ)=(ϕ (x,λ),ϕ (x,λ))Tandψ (x,λ)=(ψ (x,λ),ψ (x,λ))T , i=0,n 1 i1 i2 1 i1 i2 of equation (1) by the initial conditions (cid:0) (cid:1) (7) ϕ (a,λ)=a (λ), ϕ (a,λ)=a (λ) 01 2 02 1 and similarly; (8) ψ (b,λ)=b (λ), ψ (b,λ)=b (λ) n1 2 n2 1 respectively. Lemma 1 The following asymptotic behaviours hold for |λ|→∞: am22λm2cosλρ0(x−a)+o(λm2exp|Imλ|(x−a)ρ0, dega2(λ)>dega1(λ)  −am11λm1sinλρ0(x−a)+o(λm1exp|Imλ|(x−a)ρ0, dega1(λ)>dega2(λ) ϕ (x,λ)= 01  λm(am22cosλρ0(x−a)−am11sinλρ0(x−a)) +o(λmexp|Imλ|(x−a)ρ , dega (λ)=dega (λ) 0 1 2  am22λm2sinλρ0(x−a)+o(λm2exp|Imλ|(x−a)ρ0, dega2(λ)>dega1(λ)  am11λm1cosλρ0(x−a)+o(λm1exp|Imλ|(x−a)ρ0, dega1(λ)>dega2(λ) ϕ (x,λ)= 02  λm(am11cosλρ0(x−a)+am22sinλρ0(x−a)) +o(λmexp|Imλ|(x−a)ρ , dega (λ)=dega (λ) 0 1 2  4 YALC¸INGU¨LDU¨ ANDMERVEARSLANTAS¸ −γr11am22λr1+m2cosλρ0(ξ1−a)sinλρ1(x−ξ1)  +o(λr1+m2exp|Imλ|((ξ1−a)ρ0+(x−ξ1)ρ1), dega2(λ)>dega1(λ) ϕ11(x,λ)= +γro1(1λλrr11++mm1(e−xγaprm1|1I2am2mcλ1o1|sλ(λ(rξρ11+0(−mξ11as−)inρa0λ)+ρs0in((xξλ1−ρ−1ξ(a1x))−sρi1nξ)1,λ)ρd1e(gxa−1(ξλ1))>dega2(λ)  −++γoar(m1λ11ra11m+si2mn2λλerxρ1p0+(|ξmI1m2−cλo|as()λ(sξρi1n0(−λξρ1a1−)(ρxa0)−+siξn(1xλ)−ρ1ξ(1x)−ρ1ξ)1,)dega1(λ)=dega2(λ)  +o(λr1+m2exp|Imλ|((ξ1−a)ρ0+(x−ξ1)ρ1),dega2(λ)>dega1(λ) ϕ11(x,λ)= +γro1(1λarm11+1mλ1r1e+xmp1|Isminλλ|ρ(0((ξξ11−−aa))ρs0in+λ(ρx1−(xξ−1)ξρ11)),dega1(λ)>dega2(λ) γr11λr1+m(−am22cosλρ0(ξ1−a)sinλρ1(x−ξ1)+am11sinλρ0(ξ1−a)sinλρ1(x−ξ1)  +γro1(1λarm12+2mλre1x+pm|2Imcoλs|λ(ρ(ξ01(ξ−1−a)aρ)0c+os(λxρ−1(ξx1−)ρξ11)),dega1(λ)=dega2(λ)  +o(λr1+m2exp|Imλ|((ξ1−a)ρ0+(x−ξ1)ρ1), dega2(λ)>dega1(λ) ϕ12(x,λ)= +−oγ(rλ11ra1+mm111λerx1p+m|I1msiλn|λ((ρξ01(−ξ1a−)ρa0)c+os(xλρ−1(ξx1)−ρ1ξ)1,) dega1(λ)>dega2(λ) γr11λr1+m(am22cosλρ0(ξ1−a)cosλρ1(x−ξ1)am11sinλρ0(ξ1−a)cosλρ1(x−ξ1)  +γro1(1λγrr12+2amme2x2pλr|1Im+rλ2+|m((2ξ1co−sλaρ)0ρ(0ξ+1−(xa−)siξn1)λρρ11)(,ξ2d−egξa11)(sλin)λ=ρ2d(exg−a2ξ(2λ))  +o(λr1+r2+m2exp|Imλ|((ξ1−a)ρ0+(ξ2−ξ1)ρ1+(x−ξ2)ρ2), dega2(λ)>dega1(λ) ϕ21(x,λ)= +−γroγ1(1rλ1γ1rrγ12+2r2λr22ra+1m+mr1121+eλxmr1p(+a|rIm2m+22λmc|1o(s(siξnλ1ρλ−0ρ(0aξ(1)ξρ1−0−a+)a(s)ξisn2inλ−ρλ1ξρ1(1)ξ(ρ2ξ12−+−ξ1(ξ)x1s)−isniξnλ2ρλ)2ρρ(22x)(,x−−dξe2ξg)2a)1(λ)>dega2(λ)  −+−γoa(rmλ111r1γ1+rs2irn22a+λmmρ202e(λξx1rp1−|+Imra2)+λsm|in(2(λcξo1ρs1−λ(ξρa20)(−ρξ01ξ+−1)(asξi)2ns−λinρξλ21ρ()1xρ(−1ξ2+ξ−2()x)ξ1−)cξo2s)λρ2ρ)2,(xde−gξa21)(λ)=dega2(λ)  +o(λr1+r2+m2exp|Imλ|((ξ1−a)ρ0+(ξ2−ξ1)ρ1+(x−ξ2)ρ2), dega2(λ)>dega1(λ) ϕ22(x,λ)= +γγrro11(11λγγrrr122+22aλr2mr+11+m1rλ12r+e1xm+pr(2−|+Imamm1λ2s|2i(nc(oξλ1sρλ−0ρ(ξa01()ξ−ρ10−a+)as()iξns2iλn−ρλ1ξρ1(1ξ)2(ρξ1−2+−ξ1()ξx1c)−ocsoξλ2sρ)λ2ρρ(22x)(,−xd−ξe2g)ξ2a)1(λ)>dega2(λ)  ++oa(mλ1r11+sirn2+λmρ0e(ξx1p−|Ima)λs|in((λξ1ρ1−(ξa2)−ρ0ξ+1)(cξo2s−λρξ21()xρ1−+ξ2()x−ξ2)ρ2), dega1(λ)=dega2(λ) INVERSE PROBLEMS FOR DIRAC OPERATORS 5 ,..., n (−1)nam22λA+m2 × γrii ×cosλρ0(ξ1−a)sinλρn(x−ξn)×  ! i=1 ϕn1(x,λ)= +×(+×−oo 1((λλ)iiYY==nnnAA+22++1ssmmiiann12mλλee1ρρxx1iippλ−−A||11II+mm((ξξmiiλλ1−−||×((((ξξYbb ii−−−−iY11=n))ξξ1!!nnγ))riρρinn!++sinXi=nnλ1ρ((0ξξ(iiξ−1−−ξξiia−−)11s))iρρnii−−λρ11))n,,(xddee−ggξaan12)((×λλ))>>ddeeggaa21((λλ)) i=1  +λ×Ao+(λmA+×+((m−− e11Yix=))nnnp1+γa|Ir1mmiai2!m2λc|1×1o((ssbiλn−ρλ0ξρ(nξ01)(ξρ−1n−a+)asXi)i=nnsX1iλn(ρξλniρ−(nxξ(−xi−−ξ1n)ξ)ρni×−)1× ),Yi =nd2iY=nes2ignsaiλn1ρ(λiλ−ρ)1i−=(1ξid(ξ−eig−ξai−2ξ1(i−λ)!1))!  6 YALC¸INGU¨LDU¨ ANDMERVEARSLANTAS¸ n (−1)n+1am22λA+m2 × γrii cosλρ0(ξ1−a)cosλρn(x−ξn)×  i=1 ! ϕn2(x,λ)= +×(+×−oo 1((λλ)iiYY==nnnAA22a++ssmmmiinn1121λλeeλρρxxAiipp−−+||11mIImm((1ξξ×iiλλ−−|| ((((ξξiYbbii=n−−−−1Y11γ))ξξr!!nini))!ρρsnnin++λXiρ=nn01(ξ((1ξξii−−−aξξ)ii−−co11s))λρρρii−−n11())x,, −ddeeξggn)aa12×((λλ))>>ddeeggaa21((λλ)) i=1 X  +λ×Ao+(λmA(+−×+(m1− )en1iYx=+n)pn11γ|aaIrmmmii21!λ21|c×s(ion(sbλλ−ρρ00ξ((nξξ)11ρ−−naa+))cXci=oonss1λλ(ξρρinn−((xxξ−i−−1ξξ)nnρ))i××−1 ),YiiY==nnd22essgiinnaλλ1ρρ(iλi−−)11=((ξξdiie−−gξaξii2−−(11λ))!)!  where A=r +r +···+r . 1 2 n Lemma 2 The following asymptotic behaviours hold for |λ|→∞: bm42λm4cosλρn(x−b)+o(λm4exp|Imλ|(x−b)ρn, degb2(λ)>degb1(λ)  −bm31λm3sinλρn(x−b)+o(λm3exp|Imλ|(x−b)ρn, degb1(λ)>degb2(λ) ψ (x,λ)= n1  λmb(bm42cosλρn(x−b)−bm31sinλρn(x−b)) +o(λmbexp|Imλ|(x−b)ρn), degb1(λ)=degb2(λ)  bm42λm4sinλρn(x−b)+o(λm4exp|Imλ|(x−b)ρn, degb2(λ)>degb1(λ)  bm31λm3cosλρn(x−b)+o(λm3exp|Imλ|(x−b)ρn, degb1(λ)>degb2(λ) ψ (x,λ)= n2  λmb(bm42sinλρn(x−b)+bm31cosλρn(x−b)) +o(λmbexp|Imλ|(x−b)ρn), degb1(λ)=degb2(λ)  INVERSE PROBLEMS FOR DIRAC OPERATORS 7 bm42γrnnλrn+m4cosλρn(ξn−b)sinλρn−1(x−ξn)  +o(λrn+m4exp|Imλ|((ξn−b)ρn+(x−ξn)ρn−1),degb2(λ)>degb1(λ) ψn−1,1(x,λ)= +−obm(λ3r1nγ+rnmn3λerxnp+|mIm3sλin|(λ(ρξnn(−ξnb−)ρbn)+sin(xλρ−n−ξn1)(xρn−−1ξ)n,) degb1(λ)>degb2(λ) γrnnλrn+mb(−bm31sinλρn(ξn−b)+bm42cosλρn(ξn−b))sinλρn−1(x−ξn)  +o(λrn+mbexp|Imλ|((ξn−b)ρn+(x−ξn)ρn−1), degb1(λ)=degb2(λ) −bm42γrnnλrn+m4cosλρn(ξn−b)cosλρn−1(x−ξn)  +o(λrn+m4exp|Imλ|((ξn−b)ρn+(x−ξn)ρn−1), degb2(λ)>degb1(λ) ψn−1,2(x,λ)= b+mo3(1λγrrnn+nmλ3rne+xmp3|Isminλλ|ρ(n(ξ(nξn−−b)b)ρnco+sλ(ρxn−−1ξ(nx)ρ−n−ξn1)), degb1(λ)>degb2(λ) γrnnλrn+mb(bm31sinλρn(ξn−b)−bm42cosλρn(ξn−b))cosλρn−1(x−ξn)  +o(λrn+mbexp|Imλ|((ξn−b)ρn+(x−ξn)ρn−1), degb1(λ)=degb2(λ) −bm42γrnnγrn−1n−1λrn+rn−1+m4×  ×cosλρn(ξn−b)sinλρn−1(ξn−ξn−1)sinλρn−2(x−ξn−1) ψn−2,1(x,λ)= ,+b×+moods3((ie1nλλgγrrλrnnbnρ2++nn(rrγ(λnnξr−−)nn11−>++−1mmndb−43e)1geesλxxibnrpp1nλ||(+IIλρmmrn)n−−λλ11||+(((((mξξξn3nn×−−−ξbbn))−ρρ1nn)++sin((ξξλnnρ−−n−ξξ2nn(−−x11−))ρρξnnn−−−111++) ((xx−−ξξnn−−11))ρρnn−−22)) , degb (λ)>degb (λ) 1 2  ×+γ,ron(d(bneλmγgrr3nbn11+−s(r1iλnnn−)−λ11=ρ+λnmrd(nbξe+negxrb−np2−|(b1Iλ)+m)−mλbb|sm(i(n4ξ2λncρ−ons−bλ2)ρρ(nnx(+ξ−n(ξ−ξnn−b−1)))ξsnin−λ1)ρnρ−n−11(ξ+n−(xξ−n−ξ1n)−×1)ρn−2) 8 YALC¸INGU¨LDU¨ ANDMERVEARSLANTAS¸ bm42γrnnγrn−1n−1λrn+rn−1+m4×  ×cosλρn(ξn−b)sinλρn−1(ξn−ξn−1)cosλρn−2(x−ξn−1) ψn−2,2(x,λ)= ,+−×+obodsm((ienλλ3grr1λnnbγρ2++rnn(rr(λnnnξ−−)γn11r>++n−−mmd1b43en)gee−sxxib1npp1λλ||r(IInλρmm+n)−rλλn1||−(((1((ξ+ξξnmnn−3−−×ξbbn))−ρρ1nn)++sin((ξξλnnρ−−n−ξξ2nn(−−x11−))ρρξnnn−−−111++) ((xx−−ξξnn−−11))ρρnn−−22)) , degb (λ)>degb (λ) 1 2  ×γ,+ron(d(−neλγgbrrmnbn1+−31(r1λnns−)i−n11=+λλmρrdnnbe+(egξxrbnnp2−−|(1Iλ+mb)m)λb+|c(ob(msξnλ42ρ−cno−bs)2ρλ(nρxn+−(ξ(ξnξnn−−−1b))ξs)nin−λ1)ρρnn−−11(ξ+n(−xξ−n−ξn1)−×1)ρ2) ,..., n (−1)nbm42λr2+...+rn+m4 × γrii ×  i=2 ! ψ11(x,λ)= ××+(−ocs1(ionλ)snrλλ−2ρ+ρ1nn.b.((.m+ξξnnr3n1−−λ+rmbb2)+)4ss.e.iix.nn+pλrλ|nρρI+1m1m((xλx3|−×−((Yξξ ξ222Yi))−=n××2ξγ 1 r)iiYiiYρ=!=nn133×s+siinnXi=λnλρ3ρii(−−ξ1i1−((ξξiiξ−i−−1ξξ)ii−−ρ11i−))!!1), degb2(λ)>degb1(λ) n  ×+λ+roo 2((+λλiY.=n.rr.223+++sri..n..n..+++λmrrρnnbi++−×mm1 3b(ξeeiYixx=n−pp2γ||ξIIrimmi−i!1λλ)||×!(((((sξξi22n−−+(λ−ρξξ(11−11)))(n1xρρ−)11−n1++bbξmm2XXii4)==3n21×33cs((oiξξnsiiλλ−−ρρnnξξi(i(−−ξξnn11))−−ρρiibb−−))11))),, ddeeggbb11((λλ))=>ddeeggbb22((λλ)) INVERSE PROBLEMS FOR DIRAC OPERATORS 9 n (−1)n−1bm42λr2+...+rn+m4 × γrii ×  ! i=2 ψ12(x,λ)= +××(−ocs1(ionλ)snrλλ2bρ+ρmnn..3(.(1+ξξλnnrnr−−2++mbb..)4).+cceoroxnssp+λλ|mρIρm131(×(λxx| −−((iYξ=ξξn2222Y))γ−×r×iξi1 ! )iYiYρ×==nn133+ssiinnXi=nnλλ3ρρi(i−−ξi11−((ξξiξii−−−1ξξ)ii−−ρ1i1−))!1!), degb2(λ)>degb1(λ)  +×+λroo 2((+λλYi.=n.rr.223+++sri..n..n..+++λmrrρnnbi++−×mm1 3b(ξeeiYixx=n−pp2γ||ξIIrimmi−i!1λλ)||×!((((cξξo22s−−+λρξξ((111−−))(11xρρ))11n−n++−bξ1mX2Xiib==)n3m133×4s((2iξξnciioλ−−sρλnξξiiρ(−−ξn11n())ξ−ρρniib−−−)11b))),, ddeeggbb11((λλ))=>ddeeggbb22((λλ)) 10 YALC¸INGU¨LDU¨ ANDMERVEARSLANTAS¸ n (−1)n−1bm42λA+m4 × γrii ×  ! i=1 ψ01(x,λ)= ×+(×−ocs1(ionλ)snAλλb+ρρmnmn3((41ξξλennxA−−p+|mbbI)m)3ss×iiλnn| λλ((ρρiYξ=0n011(Y(γ−xxr−i−ai!)ξξρ11×0))+××X i =nnYii2Y==nn(22ξssiiin−nλλξρρi−ii−−11)1ρ((ξξi−ii−1−),ξξii−d−1e1)g)!!b2(λ)>degb1(λ)  +×λ+Aoo +((λλYim=nAAb2++×smmin 3bλeeYiρxx=nipp1−γ||1IIrmmi(iξ!iλλ−||×((((ξsξξii−11n1−−λ)ρ!aa0))(ρρx00−+++(ξ(XXii−1−==n)2121×))((nnξξ−iib1−−mb3ξξm1ii−−4s2i11nc))oλρρsρii−−λn11ρ())ξn,,n(ξ−ddneeb−gg)bbb11)((λλ))=>ddeeggbb22((λλ))

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.