MichaelV.Klibanov,JingzhiLi InverseProblemsandCarlemanEstimates Inverse and Ill-Posed Problems Series | Edited by Sergey I. Kabanikhin, Novosibirsk, Russia; Almaty, Kazakhstan Volume 63 Michael V. Klibanov, Jingzhi Li Inverse Problems and Carleman Estimates | Global Uniqueness, Global Convergence and Experimental Data MathematicsSubjectClassification2010 35R30,65N21 Authors Prof.Dr.MichaelV.Klibanov Prof.JingzhiLi UniversityofNorthCarolinaatCharlotte SouthernUniversityofScienceandTechnology DepartmentofMathematicsandStatistics DepartmentofMathematics 9201UniversityCityBlvd. 1088XueyuanAve Charlotte,NC28223,USA Shenzhen518005,P.R.China [email protected] [email protected] ISBN978-3-11-074541-2 e-ISBN(PDF)978-3-11-074548-1 e-ISBN(EPUB)978-3-11-074555-9 ISSN1381-4524 LibraryofCongressControlNumber:2021940405 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2021WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com | MichaelVictorKlibanovdedicatesthisbooktohisfamily:Ada(mother),Victor(fa- ther), Vera (wife), Olga and Gregory (children), Luba (sister), and Leah and Victor (grandchildren).Theyhavebeenalwaysverysupportiveofhimandhismathematical effort.JingzhiLidedicatesthisbooktohisfamily:Fengying(mother),Shide(father), Ning(wife),MengyaandMengqi(children).Theyhavebeenalwaysverysupportiveof himandhismathematicalinterest. Preface In1981,almost40yearsago,A.L.BukhgeimandM.V.Klibanovintroduced,forthefirst time,thepowerfultoolofCarlemanestimatesinthefieldofInverseProblems[51].The techniqueof[51]isnowcalledthe“Bukhgeim–Klibanovmethod”(BK);see[48,49, 120,122]forthefirstdetailedproofsoftheoremsof[51].AccordingtoGoogleScholar, thepaper[51]currently(2021)hasmorethan570citations;seehttps://scholar.google. com/citations?user=pFmp7LMAAAAJ&hl=en. While initially the BK method was thought only as a tool for proofs of global uniqueness and stability theorems for coefficient inverse problems, it was discov- ered recently that the ideas of BK generate a powerful numerical method for these problems,theso-calledconvexificationmethod. ThisbooksummarizesthemainanalyticalandnumericalresultsofM.V.Klibanov andJ.LiaboutthetechniqueofCarlemanestimates,whichtheyhaveobtainedsince thepublication[51]. GivenaPartialDifferentialEquation(PDE),aCoefficientInverseProblem(CIP)for itistheproblemoffindingeitheroneorseveralcoefficientsofthatequationfromaddi- tionalboundarymeasurements.CIPshavearapidlygrowingnumberofapplications inmanyfields;seeChapters7–12. Thefollowingfourtopicsarediscussedinthisbook: 1. Topic1:DerivationofCarlemanestimatesandconditionalstabilityestimatesfor someill-posedCauchyproblems,Chapter2. 2. Topic 2: Global uniqueness for multidimensional CIPs on the basis of the BK method,Chapter3. 3. Topic3:Carlemanestimatesfornumericalmethodsforill-posedCauchyproblems forPDEs,Chapters4and5. 4. Topic4:TheconvexificationgloballyconvergentnumericalconceptforCIPs:afar reachingconsequenceoftheBKmethod,Chapters6–12. https://doi.org/10.1515/9783110745481-201 Acknowledgments MichaelVictorKlibanovwassupportedbytwoUSArmyResearchLaboratoryandUS ArmyResearchOfficegrantsW911NF-15-1-0233andW911NF-19-1-0044.M.V.Klibanov heartilyappreciatesthesupportandunderstandingofDr.JosephD.Myers,aProgram ManagerofTheUSArmyResearchOffice. Jingzhi Li was partially supported by the NSF of China No.11971221, Shenzhen Sci-TechFundNos.JCYJ20190809150413261andJCYJ20170818153840322,andGuang- dongProvincialKeyLaboratoryofComputationalScienceandMaterialDesignNo. 2019B030301001. https://doi.org/10.1515/9783110745481-202