ebook img

Inverse modelling of CH4 emissions for 2010–2011 - ACP PDF

21 Pages·2015·4.9 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inverse modelling of CH4 emissions for 2010–2011 - ACP

Atmos.Chem.Phys.,15,113–133,2015 www.atmos-chem-phys.net/15/113/2015/ doi:10.5194/acp-15-113-2015 ©Author(s)2015.CCAttribution3.0License. Inverse modelling of CH emissions for 2010–2011 using different 4 satellite retrieval products from GOSAT and SCIAMACHY M.Alexe1,P.Bergamaschi1,A.Segers2,R.Detmers3,A.Butz9,O.Hasekamp3,S.Guerlet3,R.Parker4,H.Boesch4, C.Frankenberg5,R.A.Scheepmaker3,E.Dlugokencky6,C.Sweeney6,7,S.C.Wofsy8,andE.A.Kort10 1EuropeanCommission,JointResearchCentre,InstituteforEnvironmentandSustainability,AirandClimateUnit,Ispra,Italy 2NetherlandsOrganisationforAppliedScientificResearch(TNO),Utrecht,theNetherlands 3NetherlandsInstituteforSpaceResearch(SRON),Utrecht,theNetherlands 4EarthObservationScienceGroup,SpaceResearchCentre,UniversityofLeicester,Leicester,UK 5JetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,California,USA 6GlobalMonitoringDivision,NOAAEarthSystemResearchLaboratory,Boulder,Colorado,USA 7CIRES,UniversityofColorado,Boulder,Colorado,USA 8SchoolofEngineeringandAppliedScienceandDepartmentofEarthandPlanetarySciences,HarvardUniversity, Cambridge,Massachusetts,USA 9KarlsruheInstituteofTechnology(KIT),Karlsruhe,Germany 10DepartmentofAtmospheric,OceanicandSpaceSciences,UniversityofMichigan,Michigan,USA Correspondenceto:M.Alexe([email protected]) Received:13March2014–PublishedinAtmos.Chem.Phys.Discuss.:8May2014 Revised:31October2014–Accepted:21November2014–Published:9January2015 Abstract.Atthebeginningof2009newspace-borneobser- independently by the Netherlands Institute for Space Re- vations of dry-air column-averaged mole fractions of atmo- search(SRON)/KarlsruheInstituteofTechnology(KIT),and sphericmethane(XCH )becameavailablefromtheThermal the University of Leicester (UL), and the RemoTeC “Full- 4 And Near infrared Sensor for carbon Observations–Fourier Physics” (FP) XCH retrievals available from SRON/KIT. 4 TransformSpectrometer(TANSO-FTS)instrumentonboard TheGOSAT-basedinversionsshowsignificantreductionsin theGreenhouseGasesObservingSATellite(GOSAT).Until therootmeansquare(rms)differencebetweenretrievedand April 2012 concurrent methane (CH ) retrievals were pro- modelled XCH , and require much smaller bias corrections 4 4 vided by the SCanning Imaging Absorption spectroMeter compared to the inversion using SCIAMACHY retrievals, for Atmospheric CartograpHY (SCIAMACHY) instrument reflecting the higher precision and relative accuracy of the on board the ENVironmental SATellite (ENVISAT). The GOSAT XCH . Despite the large differences between the 4 GOSAT and SCIAMACHY XCH retrievals can be com- GOSATandSCIAMACHYretrievals,2-yearaverageemis- 4 pared during the period of overlap. We estimate monthly sionmapsshowoverallgoodagreementamongallsatellite- average CH emissions between January 2010 and Decem- based inversions, with consistent flux adjustment patterns, 4 ber2011,usingtheTM5-4DVARinversemodellingsystem. particularly across equatorial Africa and North America. In addition to satellite data, high-accuracy measurements Over North America, the satellite inversions result in a sig- from the Cooperative Air Sampling Network of the Na- nificantredistribution ofCH emissionsfrom North-Eastto 4 tional Oceanic and Atmospheric Administration Earth Sys- South-Central United States. This result is consistent with tem Research Laboratory (NOAA ESRL) are used, provid- recent independent studies suggesting a systematic under- ing strong constraints on the remote surface atmosphere. estimation of CH emissions from North American fossil 4 We discuss five inversion scenarios that make use of dif- fuel sources in bottom-up inventories, likely related to nat- ferentGOSATandSCIAMACHYXCH retrievalproducts, ural gas production facilities. Furthermore, all four satellite 4 including two sets of GOSAT proxy retrievals processed inversions yield lower CH fluxes across the Congo basin 4 PublishedbyCopernicusPublicationsonbehalfoftheEuropeanGeosciencesUnion. 114 M.Alexeetal.:InversemodellingofCH emissionsfor2010–2011 4 comparedtotheNOAA-onlyscenario,buthigheremissions aschi et al., 2013a; Houweling et al., 1999; Bousquet et al., acrosstropicalEastAfrica.TheGOSATandSCIAMACHY 2006; Hein et al., 1997; Mikaloff Fletcher et al., 2004a, b). inversionsshowsimilarperformancewhenvalidatedagainst Smaller-scaleregionalpatterns,however,largelyremainde- independentshipboardandaircraftobservations,andXCH termined by the prior emission inventories (due to lack of 4 retrievalsavailablefromtheTotalCarbonColumnObserving observations). Network(TCCON). Since 2002, satellite retrievals of total-column CH mix- 4 ing ratios have been available from the SCanning Imag- ing Absorption spectroMeter for Atmospheric CHartogra- phY(SCIAMACHY)instrumentonboardtheENVironmen- 1 Introduction tal SATellite, ENVISAT (Frankenberg et al., 2005, 2006, 2008,2011;Buchwitzetal.,2005;Schneisingetal.,2012). Atmospheric methane (CH ) is the second-most important TheSCIAMACHYdatawerethefirstspace-borneXCH re- 4 4 anthropogenicgreenhousegas(GHG)–aftercarbondioxide trievalssensitivetotheatmosphericboundarylayer.Thisnew (CO )–intermsofnetradiativeforcing(RF).Emissionsof data set, along with an extension in data coverage to previ- 2 CH havecausedanRFof0.97Wm−2(Stockeretal.,2013), ously observation-poor areas, such as the tropics, led to the 4 abouttwicetheconcentration-basedestimate(0.48Wm−2). first global and regional inversions of CH fluxes (Bergam- 4 After a period of stabilization from 1999 to 2006 (Dlugo- aschi et al., 2007, 2009; Frankenberg et al., 2008; Meirink kencky et al., 2003; Simpson et al., 2006), CH concentra- et al., 2008a). Due to the relatively long operational life- 4 tions in the atmosphere have started to rise again (Dlugo- time of SCIAMACHY (almost one decade), the XCH re- 4 kenckyetal.,2009;Rigbyetal.,2008;Nisbetetal.,2014), trievals from this instrument were useful for analysing the and are currently estimated to be 160% higher than pre- interannualCH variability(IAV)duringthisperiod(Berga- 4 industrial(1750)values(WMO,2013).Previousresearchhas maschi et al., 2013a). However, the impact of the serious identified the main sources and sinks of atmospheric CH ; detector pixel degradation, which occurred at the end of 4 however, there remain considerable uncertainties regarding 2005, remains difficult to evaluate, despite overall consis- theirrelativeimportance(Kirschkeetal.,2013). tency of the SCIAMACHY time series with surface obser- Since large-scale regional or global CH fluxes cannot vations(Frankenbergetal.,2011). 4 bedirectlymeasured,attemptsatestimatingthesequantities Since 2009, XCH retrievals have also become available 4 have traditionally relied on two complementary techniques: from the Greenhouse Gases Observing SATellite (GOSAT) “bottom-up” emission inventories, and inverse modelling ThermalAndNearinfraredSensorforcarbonObservations– (“top-down”).Bayesianinversemodelling(Tarantola,2004) Fourier Transform Spectrometer (TANSO-FTS) instrument of CH emissions operates under a well-defined mathemat- (Parkeretal.,2011;Yoshidaetal.,2011;Butzetal.,2011). 4 ical framework that combines a priori information on CH Giventhelimitedlifetimeofsatelliteinstruments(thecom- 4 emissions, atmospheric observations, and an atmospheric munication link to ENVISAT was lost in April 2012, while chemistry and transport model (CTM), to yield a statistical the GOSAT mission plans extend only until 2014), inverse bestestimateofCH emissionsandconcentrationsoverthe modelling comparison studies using different satellite re- 4 timeperiodofinterest.Thequalityoftheestimatesobtained trievals are of great importance for understanding the dif- throughinversemodellingdependsinlargepartonthequal- ference between products. Such analyses are a crucial step ityoftheobservationdataavailableforthespatialandtem- when using satellite data to analyse IAV and trends. Within poraldomainsofinterest,andonthequalityoftheCTM. the European project Monitoring Atmospheric Composi- SurfacemeasurementsofCH concentrationsareavailable tionandClimate–InterimImplementation(MACC-II)pre- 4 fromglobalnetworkssuchastheCooperativeAirSampling operational “delayed-mode” CH flux inversions are per- 4 Network of the National Oceanic and Atmospheric Admin- formed, which are updated every six months (Bergamaschi istrationEarthSystemResearchLaboratory(NOAAESRL) etal.,2013b).Beginningin2012theassimilatedsatellitedata (Dlugokencky et al., 1994, 2009, 2013). However, surface set changed from SCIAMACHY IMAPv5.5 to GOSAT Re- observations provide only sparse global coverage, with the moTeCv2.0(Bergamaschietal.,2013b).Furthermore,alter- exceptionofcertainregions,mainlyEuropeandNorthAmer- nativeXCH productsfromGOSATandSCIAMACHYhave 4 ica,whereregionalmonitoringstations,includingtalltowers been developed within the European Space Agency GHG and aircraft profiles, have been set up in recent years (e.g. Climate Change Initiative (ESA-GHG CCI) project (Buch- Vermeulen et al., 2007). Surface measurements provide ef- witzetal.,2013). fectiveconstraintsonregionalemissions(Bergamaschietal., This study will present a detailed comparison of global 2010; Kort et al., 2008; Miller et al., 2013); however, they CH flux inversions constrained by different GOSAT and 4 are not available in many important emission regions, such SCIAMACHYretrievalproductsandsurfacemeasurements, as the tropics. Inversions based on global background sites covering the 2-year period between January 2010 and De- haveprovidedagoodpictureofglobalandcontinentalCH cember 2011. The availability of multiple satellite retrieval 4 emissions,theirtrends,andinter-annualvariability(Bergam- products covering the same time interval allows for a de- Atmos.Chem.Phys.,15,113–133,2015 www.atmos-chem-phys.net/15/113/2015/ M.Alexeetal.:InversemodellingofCH emissionsfor2010–2011 115 4 Table1.Satellitedatausedintheinversions. Satellite/Instrument Algorithm ProxyCO2model Dataprovider Temporaldatacoverage ENVISAT/SCIAMACHY IMAPv5.5 CarbonTracker SRON Jan2009–Mar2012 GOSAT/TANSO-FTS OCPRv4.0 LMDZ Univ.ofLeicester Jun2009–Dec2011 GOSAT/TANSO-FTS RemoTeCProxyv1.9/v2.0 CarbonTracker2013 SRON/KIT v1.9:Jan2009–Oct2011 v2.0:Oct2011–Jun2012 GOSAT/TANSO-FTS RemoTeCFPv2.1 – SRON/KIT Jun2009–Jun2012 tailed comparison of their consistency and added value in acteristics of each set of satellite retrievals. Further details inverse modelling, which is the main objective of this pa- areprovidedinthestudiesofParkeretal.(2011),Butzetal. per. Three recent inverse modelling studies (Fraser et al., (2011),Frankenbergetal.(2011),andSchepersetal.(2012). 2013; Monteil et al., 2013; Cressot et al., 2014) have made useofSCIAMACHYandGOSATXCH toestimateglobal 2.1 TheGOSATretrievals 4 CH fluxes and concentrations. Our approach differs sig- 4 The TANSO–FTS, on board the satellite GOSAT (launched nificantly from previous studies in that we examine an ex- by JAXA in January 2009), provides dry-air column- tendedtimeperiod,useadifferentinversionset-up,andem- averagedCH molefractionsthatcanbeusedinglobaland ployseveraldistinct(optimized)biascorrectionstrategiesfor 4 regionalCH sourceandsinkinversions.TheGOSATXCH theSCIAMACHYandGOSATretrievals.Anothernovelele- 4 4 are retrieved from a short-wave infrared spectral analysis mentofthisstudyisthecomparisonoftwodifferentsatellite of sunlight backscattered by the Earth’s surface and atmo- proxy retrievals: the GOSAT RemoTeC data set (Schepers sphere. et al., 2012) from SRON/KIT, and the OCPR GOSAT re- The proxy retrieval algorithms rely on the small spectral trievalsfromtheUniversityofLeicester(UL)(Parkeretal., distance between CO and CH sunlight absorption bands 2011). We also assimilate the “Full-Physics” (FP) GOSAT 2 4 (1.6µm for CO and 1.65µm for CH ), using the CO retrievals from SRON/KIT, which do not require the use 2 4 2 column-average dry-air mole fraction (XCO ) as proxy for of modelled CO fields. Furthermore, we invert the SCIA- 2 2 thesampledairmass.Thishelpsminimizesystematicerrors MACHYIMAPv5.5retrievalsasusedintheMACCreanal- which may arise due to aerosol scattering and instrument- ysis (Bergamaschi et al., 2013a). In addition to the GOSAT relatedeffects. andSCIAMACHYsatelliteretrievals,allinversionsarecon- TheequationusedtoobtaintheXCH readsasfollows: strainedbyhigh-accuracyCH surfacedatafromtheNOAA 4 4 ESRL Cooperative Air Sampling Network. We also present [CH ] a detailed validation of the inversion results against inde- XCH4= 4 GOSAT ×XCO2modeled. (1) [CO ] 2 GOSAT pendentNOAAshipandaircraftprofilesamples,theaircraft transectsfromHIPPO–theHigh-performanceInstrumented Theproxyretrievalalgorithmsconsideredhereinusediffer- Airborne Platform for Environmental Research (HIAPER) entXCO2 modelfields. TheOCPR(OCO-Proxy)version4 Pole-to-Poleobservation(HIPPO)campaignsfrom2010and retrievalalgorithm(Parkeretal.,2011)fromUL,developed 2011,andXCH datafromtheTotalCarbonColumnObser- under the ESA GHG-CCI initiative, derives the column- 4 vationNetwork(TCCON)FTS(Wunchetal.,2010).Finally, averaged mole fractions of CO2 from the LMDZ model wediscusstheimpactofseveralbiascorrectionapproaches ((Chevallieretal.,2010); MACC-II CO2 fields, optimized ontheestimatedtotalemissions. for the whole period until the end of 2011). The RemoTeC Thispaperisorganizedasfollows.Section2summarizes Proxy algorithm (version 1.9/2.0) (Schepersetal.,2012) themaincharacteristicsofthesatelliteandsurfaceobserva- uses modelled CO2 total columns obtained from Carbon- tionsusedintheinversion.Theinversemodellingframework Tracker (Peters et al., 2007) version 2013, with optimized isdescribedbrieflyinSect.3.InSect.4,wepresentanddis- CO2 fields for 2009–2012. Perturbations in the optical path cuss the CH4 emission estimates for the various inversion will mostly cancel out when taking the ratio [[CCHO42]]GGOOSSAATT of scenarios,andthevalidationofthemodelsimulationsagainst the two measurements. However, Eq.(1) implies that errors independent measurement data. Finally, the conclusions of inthemodelledCO2columnspropagatedirectlyintothede- thestudyaresummarizedinSect.5. rived XCH4. The quality of the latter depends thus on the accuracyofthemodelledCO fields. 2 The third GOSAT XCH data set used in this 4 2 Observations study is the RemoTeC FP version 2.1 from SRON/KIT (Butzetal.,2011). The CH and CO columns are re- 4 2 Table1givesanoverviewofthesatellitedatausedinthein- trieved simultaneously with three effective aerosol parame- versions.Thefollowingsub-sectionsbrieflydiscussthechar- ters (amount, size, and height) from GOSAT-FTS measure- www.atmos-chem-phys.net/15/113/2015/ Atmos.Chem.Phys.,15,113–133,2015 116 M.Alexeetal.:InversemodellingofCH emissionsfor2010–2011 4 Figure1.ObservationdatamapindicatingthelocationsofNOAAsurfacestationsusedintheinversions(trianglesymbols;seealsoTableT1 intheSupplement).ThesquaresindicatetheTCCONstationlocations.SomeoftheNOAAandTCCONstationsareco-located.Theregions covered by NOAA ship cruises (labelled as POC) are displayed through the horizontal blue lines, which indicate the longitudinal range ◦ withineach5 latitudeband.Inaddition,weshowtheNOAAaircraftprofilelocations(redcrosses),andtheHIPPO3–5transectsusedfor validation. mentsattheoxygen(O )A-bandaround0.76microns(µm), VariationsintheCO atmosphericcolumnsareaccountedfor 2 2 the CH and CO absorption bands around 1.6µm, and the through the use of modelled CarbonTracker carbon dioxide 4 2 strong CO absorption band around 2.0µm. Dividing the fields (Frankenberg et al., 2011). Problems with the detec- 2 CH columnbythedry-aircolumnfromtheEuropeanCen- torontheSCIAMACHYinstrumentoccurredunexpectedly 4 tre for Medium-Range Weather Forecast (ECMWF) ERA- attheendof2005,andledtoaconsiderabledegradationof Interim data yields the CH dry-air mixing ratios (XCH ). theinstrumentperformanceinthe1.6µmregionrelevantfor 4 4 The full physics approach does not require a proxy CO CH retrievals.ThemainfeatureoftheIMAPv5.5algorithm 2 4 field;instead,theamountofsunlightscatteringisestimated that set it apart from its predecessor, version 5.0 (Franken- directly, together with the XCH , from the measured spec- bergetal.,2008),istheextensionofthetimeseriesbeyond 4 tra.However,thismethodcanonlyaccountforafractionof 2005,usingacoherent,uniformpixelmaskfortheentirere- the total scattering (Butzetal.,2011). A further trade-off is trieval period, so as to minimize the impact of pixel degra- the lower tolerance to cloud cover (i.e. the method requires dation(Frankenbergetal.,2011).Thepixeldeteriorationre- a stricter cloud filter). Possible biases in the satellite data mainsvisibleintheIMAPv5.5retrievals(highernoiselev- are corrected using XCH observations from the TCCON elsarenoticeablefromNovember2005).Nonetheless,com- 4 (Wunchetal.,2010)asanchorpoints. parisonswithmeasurementsatNOAAsurfacesitesindicate ThefiltersettingsfortheGOSATSRONFPretrievalsfol- relatively good consistency of the satellite data time series lowtheapproachofButzetal.(2011).Weuseonlyobserva- (Frankenberg et al., 2011). There remain some systematic tionstakenoverland(nosunglintoceandata)thathavebeen differencesbetweenIMAPv5.5andv5.0retrievals(Franken- screenedforclouds.ScenarioS1-GOSAT-SRON-FPalsoas- berg et al., 2011; Bergamaschi et al., 2013a). Following similates M-gain data (recorded over highly reflective land Bergamaschi et al. (2013a), we use a re-processed version surfaces).Thereareconsiderabledifferencesinthetotalac- of the IMAP v5.5 retrievals. This version includes Carbon- cepted pixel counts for the FP vs. the GOSAT proxy meth- Tracker release 2010 CO fields for the year 2009, while 2 ods.Furthermore,GOSAThasagenerallymuchsparserspa- CO fields for years 2010 through 2012 are based on non- 2 tialsampling(duetotheFTSintegrationtime)comparedto optimized TM5 forward model runs using optimized CO 2 SCIAMACHY. Table 4 reports the total number of satellite emissionsfrompreviousyears(Bergamaschietal.,2013a). datapointsthatwereusedineachscenario(seealsoFig.4). Weassimilateonlysatellitedataoverlandbetween50◦N and 50◦S. We also discard all pixels whose average sur- faceelevationisnotwithin250moftheTM5modelsurface 2.2 TheSCIAMACHYretrievals height(Bergamaschietal.,2009,2013a).Toavoidspurious outliers that may have a large impact on the inversion, we TheSCIAMACHYIterativeMaximumAPosteriori(IMAP) filter out any SCIAMACHY or GOSAT XCH retrievals of 4 version 5.5 retrievals used in this study (Frankenberg et al., 2011) are calculated by the proxy method outlined above. Atmos.Chem.Phys.,15,113–133,2015 www.atmos-chem-phys.net/15/113/2015/ M.Alexeetal.:InversemodellingofCH emissionsfor2010–2011 117 4 2011. These observations allow us to evaluate the simu- lated concentrations in the marine boundary layer, down- wind of continental sources. Further important validation data sources are the NOAA aircraft-based vertical profiles (across North America and the Pacific Ocean, http://www. esrl.noaa.gov/gmd/ccgg/aircraft/index.html, and Fig. 1), to validate the modelled CH vertical gradients in the tropo- 4 sphere. 2.4.2 HIPPOaircraftcampaigns SimulatedCH fieldsarealsovalidatedagainstcampaigns3, 4 4and5oftheHIPPOprogram(Wofsy,2011).Thethreecam- Figure 2. The inversion settings, as described in Sect. 3.2. Inver- sion blocks 2 and 3 start on 1 January 2010 and 1 January 2011, paignswererunduringMarch–April2010(HIPPO-3),June– respectively,fromtheoptimized3-DCH4 fieldscalculatedbythe July2011(HIPPO-4),andAugust–September2011(HIPPO- previousblock. 5), for the most part over the Pacific Ocean (see Fig. 1), but also partially above North America (between 87◦N and 67◦S). The HIPPO data consist of continuous profiles be- less than 1500nmolmol−1 (henceforth abbreviated as ppb), tweenca.150mand8500maltitude.Severalprofilesextend orlargerthan2500ppb. upto14kmaltitude.Fordetailsonthemeasurementprocess, A SCIAMACHY pixel covers a ground area of 30km which makes use of a quantum cascade laser spectrometer (along track) times 60km (across track), whereas TANSO- (QCLS),thereaderisdirectedtoKortetal.(2012).Inaddi- FTShasagroundpixelresolutionof10.5km(atnadir).Sin- tion, air samples collected using the NOAA Programmable gleGOSATandSCIAMACHYXCH retrievalsareaveraged Flask Package were taken during the HIPPO campaigns. 4 onaregular(longitude×latitude)1◦×1◦gridovertheindi- ComparisonofQCLSmeasurementsandNOAAflasksam- vidual 3h assimilation time slots. The TM5 XCH are then plestakenwithinthesame10sintervalshowedasmallbias 4 obtained by vertical integration of the 3-D modelled CH intheHIPPOdatawhichhasbeenaccountedforinourvali- 4 fields interpolated to the same 1◦×1◦ grid, using the aver- dation(seeFig.11andtheSupplement):6ppbforHIPPO-3, aging kernels of the SCIAMACHY and GOSAT retrievals 4.5ppbforHIPPO-4,and5.2ppbforHIPPO-5. (Bergamaschietal.,2009). 2.4.3 TCCONXCH retrievals 4 2.3 TheNOAAsurfaceobservations TCCON measures dry-air column-averaged mole fractions All inversions use high-accuracy CH dry-air mole frac- 4 of atmospheric CH at several sites across the globe (Ta- 4 tion measurements from a subset of 30 NOAA ESRL sites ble T2 in the Supplement) using FTS. The TCCON XCH 4 (Dlugokenckyetal.,2013),globallydistributedasshownin observationshaveanuncertaintyof7ppb,andarelativere- Fig.1.Duetothecoarse6◦×4◦resolutionofthemodel,we peatabilityof0.2%(Wunchetal.,2010).Onlystationswith includeonlymarineandcontinentalbackgroundsites.Other sufficient data coverage during 2010–2011 are used for the locations, e.g. located near the coast or strongly influenced validation.ThemodelledXCH attheTCCONsitelocations 4 bysub-gridlocalsources,areexcludedfromtheassimilation. were calculated using prior TCCON profiles and averaging Moreover,thelistcontainsonlysiteswithsufficientdatacov- kernels(RodgersandConnor,2003). eragefor2010–2011.TheNOAAsurfacemeasurementsare calibrated against the NOAA 2004 CH standard scale, or, 4 equivalently,theWorldMeteorologicalOrganizationGlobal Atmosphere Watch (WMO GAW) CH mole fraction scale 4 3 Modelling (Dlugokenckyetal.,2005). 3.1 InversemodellingwithTM5-4DVAR 2.4 Measurementdatausedforvalidation 2.4.1 NOAAobservations WeestimatethemonthlyaveragesofCH4 surfacefluxesbe- tween January 2010 and December 2011 using the TM5- The simulated CH mixing ratios from all inversions are 4DVAR inverse modelling system (Meirink et al., 2008b). 4 evaluated against independent observations which have not We also incorporate the further developments described in beenassimilated.First,modelledCH mixingratiosarecom- Bergamaschi et al. (2009, 2010). The statistical best fit of 4 pared against NOAA ship cruise data acquired in 2010 and the model-generated 3-D CH fields and observations is 4 www.atmos-chem-phys.net/15/113/2015/ Atmos.Chem.Phys.,15,113–133,2015 118 M.Alexeetal.:InversemodellingofCH emissionsfor2010–2011 4 Figure3.Frequencydistributionsofmodel–observationresiduals(dCH4)forsatelliteandstationdata(2010–2011).Bothstationandsatellite dataaredistributedacross1ppbbins.Thetotalnumberofsurfacemeasurementsorretrievalsisdenotedbyn.Thebiasandrootmeansquare (rms)ofeachinversionareshowninTable4. achievedbyminimizationofthefollowingcostfunctional: flexibility when optimizing their seasonal variation. As in Bergamaschi et al. (2010), the temporal correlation of the 1 J(x)= (x−x )TB−1(x−x ) remainingemissions–assumedtohavelittleseasonalvaria- B B 2 tion–issetto9.5months.AGaussianfunctionofthespatial +1Xn (H (x)−y )TR−1(H (x)−y ). (2) distancebetweenmodelgridcellsisusedtomodelthespa- 2 i i i i i tialemissionerrorcorrelations,usingacorrelationlengthof i=1 500km, for all emission categories and all scenarios. Hor- Herex=(x ,x ,s)isthestatevector,whichcomprises conc em izontal error correlations in the initial CH fields are mod- 4 the initial CH fields at the beginning of each inversion se- 4 elledusingaGaussiandistanceof500km,whileerrorcorre- ries x , the monthly average emissions x , and the bias conc em lationsintheverticaldirectionaredescribedbytheNational parameters s (Bergamaschi et al., 2009, 2013a). The obser- Meteorological Center (NMC) method (Parrish and Derber, vations are denoted by y, while H(x) is the correspond- 1992; Meirink et al., 2008a). For the satellite data, the re- ing model simulation. Finally, B and R are the parameter i portederroristakenasthemeasurementuncertainty.Forthe andobservationerrorcovariancematrices,wheretheindexi surfaceobservationsweprescribeameasurementuncertainty indicates the assimilation window (set to 3h). We ensured of3ppb,whilealsotakingintoaccountthemodelrepresenta- a posteriori CH emissions were positive through the ap- 4 tionerror,estimatedfromlocalemissionsand3-Dgradients plicationofa“semi-lognormal”probabilitydensityfunction ofsimulatedCH mixingratios(Bergamaschietal.,2010). 4 (PDF)fortheaprioriemissions(x ) (Bergamaschietal., em B In all inversions the tropospheric CH sink is simulated 4 2009, 2010). This particular choice of a priori PDF intro- using hydroxyl (OH) radical fields from a TM5 full chem- duces a non-linearity in Eq. (2). The 4DVAR functional J istry run using the Carbon Bond Mechanism 4 optimized inEq.(2)isminimizedusingthealgorithmM1QN3(Gilbert based on methyl chloroform measurements (Bergamaschi and Lemaréchal, 1989). The adjoint model (Meirink et al., et al., 2009, 2010, 2013a). The lifetime of CH is calcu- 4 2008b;Kroletal.,2008)allowsforanefficientcomputation lated at 10.1 years (total CH vs. tropospheric OH). The 4 ofthegradientofJ duringtheminimizationprocess. fifth generation European Centre Hamburg general circula- TM5isanofflinetransportmodel(Kroletal.,2005)driven tion model (ECHAM5) Modular Earth Submodel System by the ERA-Interim re-analysis meteorological data (Dee version1(MESSy1)(Jöckeletal.,2006)isusedtoparame- et al., 2011) from ECMWF. We use the standard TM5 ver- terizethestratosphericchemicaldestructionofCH byOH, sion(cycle1),withaglobalhorizontalresolutionof6◦×4◦ 4 Cl,andO(1D),usingsinkaveragesfrom1999to2002. (longitude-latitude),and25hybridpressureverticallayers. The number of optimization iterations required to mini- mize the cost functional (Eq. 2) increases with the length 3.2 Inversionsettings of the assimilation window. For this reason, we have split The prior emission inventories are identical to those used all our inversions into 18-month blocks (Fig. 2), with 6- by Bergamaschi et al. (2013a). We independently optimize monthspin-downperiods(Bergamaschietal.,2013a).Con- fourgroupsofCH emissions:wetlands,rice,biomassburn- secutive blocks overlap by 6 months. The first block starts 4 ing,andotherremainingsources(Bergamaschietal.,2010, on1January2009;thethird18-monthinversionblockends 2013a).Aprioriuncertaintiesforeachemissioncategoryare on 1 July 2012. The inversion for 2009 is considered as set to 100% (per model grid cell and month), with the ex- spin-up, and not further analysed in this study. The results ceptionof the “remaining sources”whose uncertaintyis set for the 6-month spin-down periods are also not used in the to 50%. Wetland, rice, and biomass burning emissions are analysis. A priori 3-D CH4 concentration fields for 1 Jan- assumed to be uncorrelated in time, to allow the maximum uary 2009 are taken from a CH4 inversion constrained only Atmos.Chem.Phys.,15,113–133,2015 www.atmos-chem-phys.net/15/113/2015/ M.Alexeetal.:InversemodellingofCH emissionsfor2010–2011 119 4 Figure4.Column-averagedCH4mixingratios(XCH4):bias-correctedsatelliteretrievalsvs.TM5-4DVAR.Theleftplotsshowthemonthly averagebiascorrections(inppb)appliedtothesatellitedataforJanuary2010–December2011.Thepanelsontherightdisplaythetwo- yearlatitudinalaverageXCH4 values(red:satellite;blue:TM5-4DVAR)andthecorrespondingminimumandmaximumvaluesacrossthe longitude. www.atmos-chem-phys.net/15/113/2015/ Atmos.Chem.Phys.,15,113–133,2015 120 M.Alexeetal.:InversemodellingofCH emissionsfor2010–2011 4 Table2.Inversionscenarios. Inversion Assimilatedobservations S1-NOAA NOAAESRLsurfacemeasurementsonly S1-GOSAT-SRON-PX NOAAESRLsurfacemeasurementsandGOSATRemoTeCProxyv1.9/v2.0XCH4 S1-GOSAT-SRON-FP NOAAESRLsurfacemeasurementsandGOSATRemoTeCFPv2.1XCH4 S1-GOSAT-UL-PX NOAAESRLsurfacemeasurementsandGOSATOCPRv4.0XCH4 S1-SCIA NOAAESRLsurfacemeasurementsandSCIAMACHYIMAPv5.5XCH4 S2-GOSAT-SRON-FP asS1-GOSAT-SRON-FP,withaconstantbiascorrectioninsteadof2ndorderpolynomial S3-GOSAT-SRON-FP asS1-GOSAT-SRON-FP,withasmoothbiascorrection S2-GOSAT-UL-PX asS1-GOSAT-UL-PX,withaconstantbiascorrectioninsteadof2ndorderpolynomial S3-GOSAT-UL-PX asS1-GOSAT-UL-PX,withasmoothbiascorrection Table3.Inversionsettings:currentstudyvs.Monteiletal.(2013). Currentstudy Monteiletal.(2013) PriorPDFs Semi-lognormal Gaussian (may result in negative a posteriori emissions) Satelliteretrievals ENVISAT/SCIAMACHYIMAPv5.5 ENVISAT/SCIAMACHYIMAPv5.5 GOSAT/TANSO-FTS RemoTeC Proxy GOSAT/TANSO-FTSRemoTeCProxyv1.0 v1.9/2.0 GOSAT/TANSO-FTS RemoTeC FP GOSAT/TANSO-FTSRemoTeCFPv1.0 v2.1 GOSAT/TANSO-FTSOCPRv4.0 Biascorrection Function of latitude and month, opti- GOSATRemoTeCFPv1.0:Correctionbyasin- mized in the inversion (for all satellite glecoefficient(1.0037). products). GOSAT RemoTeC Proxy v1.0: no bias correc- tionapplied. SCIAMACHYIMAPv5.5:Constantfactor,plus seasonallyvaryingbiascorrectiontermbasedon specifichumidity(Houwelingetal.,2014). Stratosphericsink ECHAM5/MESSy1. Cambridge 2-D model (Velders, 1995) with a correction based on HALOE/CLAES climatol- ogyappliedabove50hPa. TroposphericOH TM5fullchemistryrunbasedonCBM4 Spivakovskyetal.(2000),withascalingfactor (seeSection3.2) of0.92. Satelliteretrievalerrors UsesreportedXCH4errors. ThereportedGOSATretrievaluncertaintiesare scaledbyafactorof1.5beforetheinversion. Emissioncategories Four categories optimized indepen- Totalemissions. dently. Prior emission uncer- 50–100% per category, grid cell, and 50%pergridcellandmonth. tainties month(seeSect.3.2). Targetperiod January2010–December2011 April2009–August2010 by surface measurements (scenario S1-NOAA of Bergam- Initial CH 3-D fields are optimized only for the first in- 4 aschietal.,2013a),withtheexceptionofscenarioS1-SCIA, versionblock.Theothertwo18monthblocksstarton1Jan- whichusestheoptimizedconcentrationsfrominversionS1- uary from the optimized initial fields of the previous inver- SCIA of Bergamaschi et al. (2013a). Sixty iterations of the sionblock.ThismethodologyguaranteesaclosedCH bud- 4 M1QN3 optimization algorithm are used for the cost func- getacrosstheentireinversionperiod,i.e.totalsourcesminus tion minimization in each inversion block for all inversions totalsinksyieldthevariationintheglobalCH burden.Ad- 4 whichincludesatellitedata,and40iterationsforS1-NOAA ditionally, the spin-down periods ensure that surface fluxes (whichassimilatesonlytheNOAAsurfacedata). for2010–2011areconstrainedbyallavailableobservations foratleast6monthsafteremission. Atmos.Chem.Phys.,15,113–133,2015 www.atmos-chem-phys.net/15/113/2015/ M.Alexeetal.:InversemodellingofCH emissionsfor2010–2011 121 4 Table4.StatisticsforinversionsS1-NOAAthroughS1-SCIA:NOAAsurfacemeasurements(left)andsatellitedata(right).SeeFig.3for thefrequencydistributionsoffitresiduals. Inversion NOAAgroundstations Satellite n Bias[ppb] rms[ppb] n Bias[ppb] rms[ppb] S1-NOAA 3418 0.2 11.5 – – – S1-GOSAT-SRON-PX 3418 0.3 12.4 106854 −0.3 9.2 S1-GOSAT-SRON-FP 3418 0.4 12.1 31201 −0.3 10.4 S1-GOSAT-UL-PX 3418 0.4 11.8 129916 −0.1 8.9 S1-SCIA 3418 0.3 12.0 432008 −0.9 32.3 (Bergamaschietal.,2013a):onebiasparameterperdegreeof latitudeandmonth,10ppbprioruncertainty,andaprescribed 20◦ latitudeGaussianerrorcorrelationlength.Thebiascor- rection coefficients used for S2-GOSAT-SRON-FP and S2- GOSAT-UL-PX are variable in time, but constant with lati- tude. The choice of bias correction scheme is not found to haveasignificantimpactontheposteriorregionalemission estimates(showninTable5). Theaimofthisstudyistoquantifytheimpactofthediffer- entsatelliteretrievalsontheinvertedCH fluxesandconcen- 4 trations.Hence,allinversionsusethesameaprioriemission inventories (as in Bergamaschi et al., 2013a), and identical OHfields.Itisimportanttonotethatthesurfaceobservations actasconstraints(or“anchorpoints”)forthebiascorrection Figure5.TheTRANSCOMemissionregionsusedinthisstudy(at scheme. 1◦×1◦ resolution). The land regions are labelled as follows: bo- realNorthAmerica(BNA),temperateNorthAmerica(TNA),trop- icalSouthAmerica(TrSA),temperateSouthAmerica(TSA),Eu- 4 Resultsanddiscussion rope(Eur),NorthAfrica(NAf),SouthAfrica(SAf),borealEurasia (BEr),temperateEurasia(TEr),tropicalAsia(TrAs),andAustrala- 4.1 Assimilationstatistics sia(Aus).Whiteareas(ice)arenotassignedtoanyregion. The posterior statistics of S1-NOAA through S1-SCIA are summarizedinTable4.Figure3showsthefrequencydistri- Theinversionscenariosconsideredinthisstudyaresum- butionsoffitresiduals(differencebetweenmodelandobser- marizedinTable2.ScenarioS1-NOAAisintendedasabase- vations). The data in Table 4 show that bias is close to zero line for all the other inversions; it uses only NOAA ESRL for both surface measurements and satellite XCH . More- 4 surface station data. Scenarios S1-GOSAT-SRON-PX, S1- over,themodelperformanceattheNOAAsitesremainsvir- GOSAT-SRON-FP, and S1-GOSAT-UL-PX assimilate both tually identical when satellite data are assimilated: compar- NOAA surface data and GOSAT XCH retrievals, whereas ing the satellite-based inversions with S1-NOAA we note 4 S1-SCIA uses SCIAMACHY retrievals and NOAA sur- only a marginal increase in the bias of 0.1–0.2ppb, and in face observations. The S1-satellite inversions make use of the root mean square (rms) difference of about 0.3–0.9ppb a second-order polynomial bias correction scheme that is (see also Fig. 3). The statistics of the three GOSAT inver- a function of latitude and month (Bergamaschi et al., 2009, sionsarealmostidenticalintermsofposteriorbias,standard 2013a).Table3liststhemaintechnicaldifferencesbetween deviation,andrmsdifferencebetweenretrievedandassimi- theinversionsystemconsideredinthecurrentstudyandthe latedXCH .WhilethelargeglobalbiasintheSCIAMACHY 4 set-upusedbyMonteiletal.(2013). XCH retrievals is, for the most part, compensated by the 4 Toassesstheimpactofthebiascorrectionschemeonthe biascorrectionmechanism(Fig.4),theaveragestandardde- posterioremissionestimates,wehaveconsideredfouraddi- viation of the posterior distribution of SCIAMACHY–TM5 tional scenarios: S2-GOSAT-SRON-FP, S3-GOSAT-SRON- fit residuals (sigma=32ppb) is much larger than that of FP, S2-GOSAT-UL-PX and S3-GOSAT-UL-PX. These dif- the GOSAT inversions (sigma=9–10 ppb for S1-GOSAT- fer from S1-GOSAT-SRON-FP and S1-GOSAT-UL-PX by SRON-PX through S1-GOSAT-UL-PX). The significantly their bias correction scheme. Inversions S3-GOSAT-SRON- lower standard deviations of the fit residuals of all GOSAT- FP and S3-GOSAT-UL-PX use a “smooth” bias correction basedinversionsdemonstratethemuchhigherprecisionand www.atmos-chem-phys.net/15/113/2015/ Atmos.Chem.Phys.,15,113–133,2015 122 M.Alexeetal.:InversemodellingofCH emissionsfor2010–2011 4 Figure 6. Left: a posteriori 2-year average emissions for S1-NOAA and S1-GOSAT-SRON-PX. The a priori emissions are shown in the topmostplot.Whiteareasindicategridcellswithverylowemissions(lessthan5mgCH4m−2day−1).Right:forS1-NOAAthedifference betweenposterioriandaprioriemissionsisshown,whileforallsatelliteinversionsthepanelsshowthedifferencebetweentheaposteriori emissionsoftheseinversionsandS1-NOAA. Atmos.Chem.Phys.,15,113–133,2015 www.atmos-chem-phys.net/15/113/2015/

Description:
doi:10.5194/acp-15-113-2015 © Author(s) 2015. 4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY M. Alexe1,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.