Inverse Laplacetransform onthe latticespacing Hirofumi Yamada∗ Division of Mathematics and Science, Chiba Institute of Technology, Shibazono 2-1-1, Narashino, Chiba 275-0023, Japan (Dated:October2,2012) InverseLaplacetransformonthelatticespacingisintroducedasacomputationalframeworkoftheextrapo- lationofthestrongcouplingexpansiontothescalingregion. Weapplythetransformtothetwo-dimensional non-linearO(N)modelatN ≥3andshowthattheapproximationofthecontinuumlimitofthesusceptibility agreeswiththeexistingtheoreticalandMonteCarlodata. PACSnumbers:11.15.Me,11.15.Pg,11.15.Tk 2 The lattice spacing a serves as the fundamental parame- Aslongasthelatticemodelsunderconsiderationaresubject 1 ter in lattice formulation of physical models. In addition to merelytosecondorhigherordertransitions,thereisnosingu- 0 the role of ultraviolet regulator, it controls almost all physi- larityatpositiverealpartofz axis. Here, wefurtherassume 2 calquantities,sincethebarecouplingg dependsonitdueto thatQ(z)hasnosingularityintheright-halfplaneofz. This t c thedimensionaltransmutation. Furtheritisadirectmeasure ensuresthat the contourposition specified by M is arbitrary O of how the model being far from or close to the continuum as long as M > 0 and M disappearsin the result. The first limit. As an attemptto explorethe theoreticalframeworkof singularitytobemetwithwouldbe,whenwemovethecon- 1 approachingtothecontinuumlimitfromtheviewpointofthe tourtotheleft,foundatz =0ifthesingularitycomingfrom expansionaround a = ∞, we have studied the delta expan- z−1inthemeasureisnotremoved. ] t sionandPade´-Boreltechniqueinrecentworks[1,2]. AsintheFouriertransform,thescalingbehaviorofQ(M) a l Wearenowawarethatthetechniquesusedin[1,2]canbe isconnectedtothelargetbehaviorofQ¯(t)(see(1)or(2)).In - p focusedto the inverseLaplace transformon the lattice spac- turn,smalltbehaviorisrelatedtothelargeabehaviorofQ. e inga,whichmaybeextendedtocomplexvaluedforthesake Then,asisapparentfromthefollowingbasicresult, h of the transformation. The purpose of the present article is [ to givethe basisofthemethodand, asanillustration, revisit L−1[z−n]= 1 tn, (3) 1 the two dimensional (2D) O(N) sigma model at N ≥ 3 to n! v demonstratethe successful approximationof the susceptibil- theseriesofQ¯ intisusuallyanentireoneandquiteadequate 8 ityinthecontinuumlimit. 8 As a conventionalmanner, it is convenientand natural to to approximatethe scaling behaviorof Q(M). The physical 3 interpretation of t is not clear to us. However, the study of use a in dimensionless combination with other dimensional 0 Q¯(t) in the approximatecomputationof the continuumlimit parameter. The appropriate one would be the scale Λ but . L ofQ(M)ismuchmoretractablethanQitself. 0 it is hidden with a inside the bare coupling. In a sense, the 1 massgaporthecorrelationlengthisaconcreterealizationof Now, we applyourscheme to 2D non-linearO(N) sigma 2 model at N ≥ 3 and illustrate how working in the t-space the scale Λ . They can be computed in the strong coupling 1 L endowedwithPade´ approximationiseffectiveinthestudyof expansionandtheresultfixesthefunctionalrelationbetween v: them and g at large a. Thus, for example, the mass gap (or continuumlimitviastrongcouplingexpansion. Thestandard i actionofthenon-linearsigmamodelonsquarelatticereads X squareinsomemodels)combinedwithatolosemassdimen- sionisanappropriateparameterreplacingΛ a.Letusdenote ar suchavariableasM. L S =−β ~σn·~σn+eµ, (4) NowweintroducetheinverseLaplacetransformasfollows: Xn µX=1,2 ForaquantityQ(M)givenasafunctionofM,wemakecom- wheree = (1,0), e = (0,1)andβ isthereciprocalofthe plexextensionofM toz ∈ Cbyaddingpureimaginarypart 1 2 naivebarecouplingg, to M. Then, consider the superposition over the imaginary partanddefineinverseLaplacetransformfort∈Rby β =1/g. (5) M+i∞ dz exp(tz) Q¯(t)= Q(z):=L−1[Q]. (1) The vector ~σ = (σ ,σ ,··· ,σ ) is constrained to satisfy ZM−i∞ 2πi z ~σ2 = N at all sites1. W2e defineNthe basic parameter M by The contour of integration is parallel to the imaginary axis. thezeromomentumlimitoftwo-pointfunctionofσ(see[1]). Laplacetransformrecoverstheoriginalfunctionby Itwasobtainablefromthesusceptibilityandsecondmoment ∞ bothofwhichwerecomputedinβ uptoβ21 [3]. Forourap- Q(z)=z dtexp(−tz)Q¯(t):=L[Q¯]. (2) proach, β must be rewritten in M. It is simply givenby the Z0 inversiongiving[1] 1 4 2(10N +19) 8(14N +25) ∗[email protected] β = M −M2 + (N +2)M3 − (N +2)M4 +··· . (6) 2 AtsmallM nearthecontinuumlimit,wenoticethepertur- changingM−ntotn/n!,giving bativeresultofcorrelationlengthξ[4–7], 4 2(10N +19) 8(14N +25) β¯=t− t2+ t3− t4+··· . ξ =Cξexp −βb −βb N−−12 1+ ∞ bβk+k1 , (7) 2! (N +2)3! (N +2)4! (11) h 0i(cid:16) 0(cid:17) (cid:16) kX=1 (cid:17) Usingthetransformedbarecoupling(11),onecanconfirmat N −2 N −2 least around or above N = 6, the continuum scaling of β¯, b =− , b =− , 0 2πN 1 (2πN)2 the inverse Laplace transformof (9). Then, the mass gap in thecontinuumlimitcanbeestimatedbyfittingthefourloop 1 b2 = N(N −2)(−0.0490−0.0141N), β¯pert to (11). Theprocessandthe resultis exactlythe same asthatpresentedin[1]. Hencewesufficeourselvestosaythe b = 1 conclusionthatthe scaling behaviorwas observedin β¯(t) in 3 N2(N −2)2 seriesoftandtheestimationofC agreedwiththeresult(8). ξ ×(0.0444+0.0216N +0.0045N2−0.0129N3). Now,wepresentanewattempttocomputethesusceptibil- ityχnearthecontinuumlimitviaitsstrongcouplingexpan- ThemasssquareM isthemomentumcounterpartofξ2 and sion. Thoughtheproblemwasdiscussedin[10]accordingto its dependence on β should be identical with (7) but possi- thetechniqueofPade´-Borelapproximants,βwastakenasthe blyaccompaniedbyanothermultiplicativeconstant,sayC . functionofχ.Theproposalinthisbriefreportistotakeauni- M However,MonteCarlodata[8] showedthatthedifferenceis fiedapproachinthestudyofthecontinuumlimitbychoosing less thana percentatN = 4. Since the two constantsagree ΛLaorM asthefundamentalparameter. Here,weregardχ witheachotherinthelargeN limitduetotheGaussiannature asthefunctionofM andconsiderinverseLaplacetransform oftwopointfunction,thedifferencebetweenC andC may ofχoncomplexM plane. ξ M actuallybenegligibleforallN ≥3. So,weneglecttheslight Thesusceptibilityχisdefinedby differenceofC andC andsimplysubstituteM−1/2intoξ M ξ β in (7), whichisvalidaslongasβ is largeenough. Thecon- χ= h~σ0·~σxi. (12) stant Cξ is specified only non-perturbatively. It was exactly N Xx computedbyHasenfratz,MaggioreandNiedermayer[9]as FromperturbativerenormalizationgroupatN ≥3,χnearthe C =32−1/2 e1−π/2 N1−2Γ 1+ 1 . (8) continuumlimitbehavesas ξ (cid:16) 8 (cid:17) (cid:16) N −2(cid:17) χ∼βC exp 2β β η 1+ c2 + c3 +··· , (13) χ −b −b β β2 Bysolving(7)forβ,wehave h 0i(cid:16) 0(cid:17) (cid:16) (cid:17) whereη =2b /b2+g /b and[4–7] 1 0 0 0 N −2 1 1 loglogx β ∼ logx+ log logx +O( ), (9) N −1 4πN 2πN 2 logx g = , (cid:0) (cid:1) 0 2πN where 1 c = (−0.1888+0.0626N), 2 N(N −2) x=(MC2)−1 (10) 1 ξ c = 3 N2(N −2)2 Sincethecompleteexpressionuptothefourlooplevelandits ×(0.1316+0.0187N −0.0202N2−0.0108N3). transformarelengthy,wereferthemin[1].Theexpansion(9) will be used when physicalquantitiesare expressedin M at TheconstantC in(13)isofnon-perturbativeandnotanalyt- χ weakcouplingregion. icallyknown.WeestimateC inlater. χ Representationofbare couplingin t-space is adequatefor Firstofall,weexpressχintermsofthemasssquareM in theextrapolationofthestrongcouplingseries(6)tothescal- bothregionsatβ ≫ 1andβ ≪ 1. Atweakcoupling,using ing region. The inverse Laplace transform is obtained by theperturbativeresult(9)and(13),wefind C (N −2) logx −1/(N−2) 2(a −loglogx) a +a loglogx+a (loglogx)2 χ= χ x 1+ 1 + 2 3 4 , (14) 2πN 2 (N −2)2logx (N −2)4(logx)2 (cid:16) (cid:17) h i a =−2(N −2)π(2Nb −c )+log2, 1 2 2 a =8(N −2)2π[N(b +6Nπb2−4Nπb −4πb c )+2πc ]−4(N −2)(−1+2(N −1)π(2Nb −c ))log2 2 2 2 3 2 2 3 2 2 +2(N −1)(log2)2, a =4(N −2)(−1+2(N −1)π(2Nb −c ))−4(N −1)log2, 3 2 2 a =2(N −1). 4 3 We need to compute inverse Laplace transform of integral z−1(logz−1)−α (α > 0 and z stands the complex ex- tceonmsiionngofrfoMm()l.ogWze)−noαt.eTthhiastatnhearretifiascatosfinpgeurltaurribtyatiaotnzbu=ta1s L−1[z−1(logz−1)−α]=ZMM−+i∞i∞ 2dπzieztzz−1(logz−1)−α, a consequencewe need anothercut in the z plane at [1,∞). Thus we restrict the location of the contour in the contour to be included within the strip 0 < ℜ[z] < 1. Perturbative region corresponds to the region t ≫ 1 and the asymptotic expansionoftheintegralreads α α(α+1) L−1[z−1(logz−1)−α]=t(logt+γ )−α 1+ + (1−ζ(2)/2)+··· . (15) E logt+γ (logt+γ )2 (cid:16) E E (cid:17) Thetransformoftermsofthetypez(logz)−α(loglogz)k (k = 1,2)canbereadilyobtainedfrom(15)byshiftingα → α+ǫ andthenexpandingtheresultinǫ. Inthismannerwearriveat C (N −2) logT −1/(N−2) 1 (N −1)(1−ζ(2)/2) χ χ¯ = t 1+ + 2πN (cid:16) 2 (cid:17) (cid:20) (N −2)logT (N −2)2(logT)2 2a1(1+ (N−N2−)l1ogT)−2(−log1T +loglogT(1+ (N−N2−)l1ogT)) a2+a3loglogT +a4(loglogT)2 + + +··· (N −2)2logT (N −2)4(logT)2 (cid:21) :=χ¯ , (16) pert where 2 T =t/C2eγE. (17) ξ 1 Atstrongcoupling,thesusceptibilityisobtainableinpow- χers=ofββ(1. +Th4eβr+esu1l2tβo2f +Bu7te2Nr+a+322aNndβ3C+om·i··[3).]Tghiveens,ususbtshtai-t Im[1/t]0 tuting(6) intothe series, we obtainthe seriesofχ expanded in1/M, -1 1 2 2(59N2+364N +480) χ= − + +··· . -2 M (N +2)M2 (N +2)2(N +4)M3 -2 -1 0 1 2 (18) Re[1/t] TheinverseLaplacetransformisreadilyobtainedbychanging M−n →tn/n!. Theresultreads FIG.1.Poledistributionofdiagonalχ forN =3atorders[3/3], str [4/4], ··· and [9/9]. The gray level of dots represents the order. 2t2 2(59N2+364N +480)t3 Lightestonescorrespondtopolesat6thandblackonesat18th. χ¯ = t− + +··· 2!(N +2) 3!(N +2)2(N +4) :=χ¯ . (19) str To study the scaling behavior of χ¯ from the series (19), Denoting the rational approximantas [m/n], we have ex- theseriesexpansionofχ¯isnotsufficientforaccurateresults, amined the pole distributionsof [n/n], [n+1/n−1], [n− though inverse Laplace transform substantially enlarged the 1/n + 1] and [n + n/n] cases. We found that [n/n] and effectiveregionofthetruncatedseries. Itrequiresexpansion [n+1/n−1] approximantshave no poles in the right-half up to quite large orders which no one performed yet. For- plane of t−1 for all N ≥ 3. Further, the pole distribution tunately the status of approximationtask is improvedby the from4thto18thordersatN = 3showsthatthepolesinthe use of Pade´ approximants. The Pade´ approximant method left-halfplane move towardthe origin as the order increases replaces the power series by the ratio of polynomials in t. (seeFig.1). Itishighlyconceivablethatattheinfinite order, The degrees m and n of the numerator and the denomina- the set of infinite poles collapse to the origin from the left. tormusthavesum whichagreeswiththe truncationorderof Thisisareflectionthatthetransformedseriesintisanentire χ¯ . Since, at large t, it is perturbativelyknown that χ¯ be- functionandthesetofdegeneratepolesrepresentsthepertur- str haves linearly in t with the logarithmic correction, we con- bativesingularityimpliedbylogarithmsin(16). Ontheother fineourselveswiththerationalfunctionsatdiagonalandnear- hand,[n−1/n+1]and[n+1/n]approximantsareplagued diagonalentriesinthePade´table. withpolesintheright-halfplane.Eventhosepolesaremerely 4 artifactsofPade´approximant,theybadlyinfluencethebehav- C = 0.012104achievesthe bestoptimization. Only atthis χ iorofχ¯[n−1/n+1] ontherealt-axis. Wethereforediscardthe value,bothofχ¯pert andχ¯[9/9] andtheirderivativesagreeata resultfrom[n−1/n+1]approximants. point.Inthisway,wecanestimateunknownnon-perturbative constant C for other values of N by using [m/n] = [9/9] χ 80 and[10/8]formsofapproximants. Theresultissummarized 70 inTableI. For all values of N at which Butera and Comi made the- 60 oreticalestimationofC , ourresultsare ingoodagreement. 50 χ −χ ThereisalsoMonteCarlodataforN =3,4and8.AtN =3, 40 thetworesults, C = 0.0146(10)[11]andC = 0.0130(5) χ χ 30 [12] were reported. At N = 4, C = 0.0329(16) in [13] −χ χ 20 −[9/9] andCχ = 0.0383(10)in [11]. AtN = 8, Cχ = 0.1037(4) χpert in [11] andC = 0.1028(2)in [12]. Thoughsmall discrep- 10 χ ancy remains, our estimates are consistent with these Monte 0 20 40 60 80 100 Carlo data. The values of [9/9] and [10/8] entries are close t TABLEI. Estimatedvaluesofthenon-perturbativeconstantC .On χ FIG.2. χ¯ (dotted)andχ¯ forN = 3. Inplotofχ¯ ,we estimationwehaveusedPade´-Borelapproximantsofβ¯atorder18th pert [9/9] pert usedforCχtheestimatedvalueCχ =0.012104. for the cases [9/9] and [10/8]. CBT means the estimation due to ButeraandComi[3]. N [9/9] [10/8] C BT 4 C χ =0.011 3 0.012104 0.012034 4 0.037018 0.036971 0.034 2 5 0.059836 0.059809 0.059 6 0.078058 0.078042 0.077 0 7 0.092404 0.092395 -2 C χ =0.012104 8 0.103830 0.103824 0.1035 9 0.113083 0.113079 C χ =0.013 -4 10 0.120703 0.120700 0.1212 0 20 40 60 80 100 20 0.157114 0.157113 FIG.3. Plotsof χ¯ −χ¯ at N = 3 for threevalues of C , [9/9] pert χ Cχ =0.011,0.012104and0.013. with each other for all N and this factindicates the stability oftheapproximation.Asawhole,thelevelofagreementwith After these observations, we compare Pade´ approximants existingresultsisimprovedthantheresultof[10]. at [n/n] and [n + 1/n − 1] to the 4-loop scaling behavior As demonstrated by the examination presented so far, in- χ¯ by using the exact result of C [9]. We have ascer- verseLaplacetransformonthe lattice spacingis foundto be pert ξ tainedthatPade´approximantsapproximatelyrecoverthescal- effectiveintheapproximationofthecontinuumlimit. Rather ing behavior for N ≥ 3. For example at N = 3, from the thantherealspaceofa, thedualspaceis convenientto con- plot of χ¯ and χ¯ in Fig. 2, we see the two functions sider scaling properties. The inverse Laplace transform pre- [9/9] pert are close with each otherfor C = 0.012104in the interval servesthe essentialinformationatscalingregionandcreates χ around t ∼ 40. To clarify the effect of C on the behav- anentire functionin t. Itisworthof exploringthe approach χ iors,wehaveplottedinFig. 3thedifferenceχ¯ −χ¯ at asanalternativeroutetothecontinuumlimitfromthestrong pert [9/9] C =0.011, 0.012104,0.013.Itisclearlyseenthatthevalue couplingexpansion. χ [1] H.Yamada,Phys.Rev.D84,105025(2011). P. Hasenfratz, and F. Niedermayer, Phys. Lett. B245, 529 [2] H.Yamada,J.ofPhys.G,36,025001(2009). (1990). [3] P.ButeraandM.Comi,Phys.Rev.B54,15828(1996). [10] H.Yamada,BrazilianJ.ofPhys.,toappear(arXiv: 1209.3396 [4] M.FalcioniandA.Treves,Nucl.Phys.B265,671(1986). [hep-lat]). [5] B.Alle´s,S.Caracciolo,A.PelissettoandM.Pepe,Nucl.Phys. [11] S.Caracciolo,R.G.Edwards,T.Mendes,A.PelissettoandA. B562,581(1999). D.Sokal,Nucl.Phys.B(Proc.Suppl.)47,763(1995). [6] S.CaraccioloandA.Pelissetto,Nucl.Phys.B455,619(1995). [12] B.B.Alle´s,A.BuonannoandG.Cella,Nucl.Phys.B500,513 [7] D.Shin,Nucl.Phys.B546,669(1999). (1997). [8] R.G.Edwards,E.Ferreira,J.GoodmanandA.D.Sokal,Nucl. [13] R.G.Edwards,E.Ferreira,J.GoodmanandA.D.Sokal,Nucl. Phys.B380,621(1992). Phys.B380,621(1992). [9] P. Hasenfratz, M. Maggiore and F. Niedermayer, Phys. Lett. B245,522(1990);