ebook img

Inverse Laplace transform on the lattice spacing PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inverse Laplace transform on the lattice spacing

Inverse Laplacetransform onthe latticespacing Hirofumi Yamada∗ Division of Mathematics and Science, Chiba Institute of Technology, Shibazono 2-1-1, Narashino, Chiba 275-0023, Japan (Dated:October2,2012) InverseLaplacetransformonthelatticespacingisintroducedasacomputationalframeworkoftheextrapo- lationofthestrongcouplingexpansiontothescalingregion. Weapplythetransformtothetwo-dimensional non-linearO(N)modelatN ≥3andshowthattheapproximationofthecontinuumlimitofthesusceptibility agreeswiththeexistingtheoreticalandMonteCarlodata. PACSnumbers:11.15.Me,11.15.Pg,11.15.Tk 2 The lattice spacing a serves as the fundamental parame- Aslongasthelatticemodelsunderconsiderationaresubject 1 ter in lattice formulation of physical models. In addition to merelytosecondorhigherordertransitions,thereisnosingu- 0 the role of ultraviolet regulator, it controls almost all physi- larityatpositiverealpartofz axis. Here, wefurtherassume 2 calquantities,sincethebarecouplingg dependsonitdueto thatQ(z)hasnosingularityintheright-halfplaneofz. This t c thedimensionaltransmutation. Furtheritisadirectmeasure ensuresthat the contourposition specified by M is arbitrary O of how the model being far from or close to the continuum as long as M > 0 and M disappearsin the result. The first limit. As an attemptto explorethe theoreticalframeworkof singularitytobemetwithwouldbe,whenwemovethecon- 1 approachingtothecontinuumlimitfromtheviewpointofthe tourtotheleft,foundatz =0ifthesingularitycomingfrom expansionaround a = ∞, we have studied the delta expan- z−1inthemeasureisnotremoved. ] t sionandPade´-Boreltechniqueinrecentworks[1,2]. AsintheFouriertransform,thescalingbehaviorofQ(M) a l Wearenowawarethatthetechniquesusedin[1,2]canbe isconnectedtothelargetbehaviorofQ¯(t)(see(1)or(2)).In - p focusedto the inverseLaplace transformon the lattice spac- turn,smalltbehaviorisrelatedtothelargeabehaviorofQ. e inga,whichmaybeextendedtocomplexvaluedforthesake Then,asisapparentfromthefollowingbasicresult, h of the transformation. The purpose of the present article is [ to givethe basisofthemethodand, asanillustration, revisit L−1[z−n]= 1 tn, (3) 1 the two dimensional (2D) O(N) sigma model at N ≥ 3 to n! v demonstratethe successful approximationof the susceptibil- theseriesofQ¯ intisusuallyanentireoneandquiteadequate 8 ityinthecontinuumlimit. 8 As a conventionalmanner, it is convenientand natural to to approximatethe scaling behaviorof Q(M). The physical 3 interpretation of t is not clear to us. However, the study of use a in dimensionless combination with other dimensional 0 Q¯(t) in the approximatecomputationof the continuumlimit parameter. The appropriate one would be the scale Λ but . L ofQ(M)ismuchmoretractablethanQitself. 0 it is hidden with a inside the bare coupling. In a sense, the 1 massgaporthecorrelationlengthisaconcreterealizationof Now, we applyourscheme to 2D non-linearO(N) sigma 2 model at N ≥ 3 and illustrate how working in the t-space the scale Λ . They can be computed in the strong coupling 1 L endowedwithPade´ approximationiseffectiveinthestudyof expansionandtheresultfixesthefunctionalrelationbetween v: them and g at large a. Thus, for example, the mass gap (or continuumlimitviastrongcouplingexpansion. Thestandard i actionofthenon-linearsigmamodelonsquarelatticereads X squareinsomemodels)combinedwithatolosemassdimen- sionisanappropriateparameterreplacingΛ a.Letusdenote ar suchavariableasM. L S =−β ~σn·~σn+eµ, (4) NowweintroducetheinverseLaplacetransformasfollows: Xn µX=1,2 ForaquantityQ(M)givenasafunctionofM,wemakecom- wheree = (1,0), e = (0,1)andβ isthereciprocalofthe plexextensionofM toz ∈ Cbyaddingpureimaginarypart 1 2 naivebarecouplingg, to M. Then, consider the superposition over the imaginary partanddefineinverseLaplacetransformfort∈Rby β =1/g. (5) M+i∞ dz exp(tz) Q¯(t)= Q(z):=L−1[Q]. (1) The vector ~σ = (σ ,σ ,··· ,σ ) is constrained to satisfy ZM−i∞ 2πi z ~σ2 = N at all sites1. W2e defineNthe basic parameter M by The contour of integration is parallel to the imaginary axis. thezeromomentumlimitoftwo-pointfunctionofσ(see[1]). Laplacetransformrecoverstheoriginalfunctionby Itwasobtainablefromthesusceptibilityandsecondmoment ∞ bothofwhichwerecomputedinβ uptoβ21 [3]. Forourap- Q(z)=z dtexp(−tz)Q¯(t):=L[Q¯]. (2) proach, β must be rewritten in M. It is simply givenby the Z0 inversiongiving[1] 1 4 2(10N +19) 8(14N +25) ∗[email protected] β = M −M2 + (N +2)M3 − (N +2)M4 +··· . (6) 2 AtsmallM nearthecontinuumlimit,wenoticethepertur- changingM−ntotn/n!,giving bativeresultofcorrelationlengthξ[4–7], 4 2(10N +19) 8(14N +25) β¯=t− t2+ t3− t4+··· . ξ =Cξexp −βb −βb N−−12 1+ ∞ bβk+k1 , (7) 2! (N +2)3! (N +2)4! (11) h 0i(cid:16) 0(cid:17) (cid:16) kX=1 (cid:17) Usingthetransformedbarecoupling(11),onecanconfirmat N −2 N −2 least around or above N = 6, the continuum scaling of β¯, b =− , b =− , 0 2πN 1 (2πN)2 the inverse Laplace transformof (9). Then, the mass gap in thecontinuumlimitcanbeestimatedbyfittingthefourloop 1 b2 = N(N −2)(−0.0490−0.0141N), β¯pert to (11). Theprocessandthe resultis exactlythe same asthatpresentedin[1]. Hencewesufficeourselvestosaythe b = 1 conclusionthatthe scaling behaviorwas observedin β¯(t) in 3 N2(N −2)2 seriesoftandtheestimationofC agreedwiththeresult(8). ξ ×(0.0444+0.0216N +0.0045N2−0.0129N3). Now,wepresentanewattempttocomputethesusceptibil- ityχnearthecontinuumlimitviaitsstrongcouplingexpan- ThemasssquareM isthemomentumcounterpartofξ2 and sion. Thoughtheproblemwasdiscussedin[10]accordingto its dependence on β should be identical with (7) but possi- thetechniqueofPade´-Borelapproximants,βwastakenasthe blyaccompaniedbyanothermultiplicativeconstant,sayC . functionofχ.Theproposalinthisbriefreportistotakeauni- M However,MonteCarlodata[8] showedthatthedifferenceis fiedapproachinthestudyofthecontinuumlimitbychoosing less thana percentatN = 4. Since the two constantsagree ΛLaorM asthefundamentalparameter. Here,weregardχ witheachotherinthelargeN limitduetotheGaussiannature asthefunctionofM andconsiderinverseLaplacetransform oftwopointfunction,thedifferencebetweenC andC may ofχoncomplexM plane. ξ M actuallybenegligibleforallN ≥3. So,weneglecttheslight Thesusceptibilityχisdefinedby differenceofC andC andsimplysubstituteM−1/2intoξ M ξ β in (7), whichisvalidaslongasβ is largeenough. Thecon- χ= h~σ0·~σxi. (12) stant Cξ is specified only non-perturbatively. It was exactly N Xx computedbyHasenfratz,MaggioreandNiedermayer[9]as FromperturbativerenormalizationgroupatN ≥3,χnearthe C =32−1/2 e1−π/2 N1−2Γ 1+ 1 . (8) continuumlimitbehavesas ξ (cid:16) 8 (cid:17) (cid:16) N −2(cid:17) χ∼βC exp 2β β η 1+ c2 + c3 +··· , (13) χ −b −b β β2 Bysolving(7)forβ,wehave h 0i(cid:16) 0(cid:17) (cid:16) (cid:17) whereη =2b /b2+g /b and[4–7] 1 0 0 0 N −2 1 1 loglogx β ∼ logx+ log logx +O( ), (9) N −1 4πN 2πN 2 logx g = , (cid:0) (cid:1) 0 2πN where 1 c = (−0.1888+0.0626N), 2 N(N −2) x=(MC2)−1 (10) 1 ξ c = 3 N2(N −2)2 Sincethecompleteexpressionuptothefourlooplevelandits ×(0.1316+0.0187N −0.0202N2−0.0108N3). transformarelengthy,wereferthemin[1].Theexpansion(9) will be used when physicalquantitiesare expressedin M at TheconstantC in(13)isofnon-perturbativeandnotanalyt- χ weakcouplingregion. icallyknown.WeestimateC inlater. χ Representationofbare couplingin t-space is adequatefor Firstofall,weexpressχintermsofthemasssquareM in theextrapolationofthestrongcouplingseries(6)tothescal- bothregionsatβ ≫ 1andβ ≪ 1. Atweakcoupling,using ing region. The inverse Laplace transform is obtained by theperturbativeresult(9)and(13),wefind C (N −2) logx −1/(N−2) 2(a −loglogx) a +a loglogx+a (loglogx)2 χ= χ x 1+ 1 + 2 3 4 , (14) 2πN 2 (N −2)2logx (N −2)4(logx)2 (cid:16) (cid:17) h i a =−2(N −2)π(2Nb −c )+log2, 1 2 2 a =8(N −2)2π[N(b +6Nπb2−4Nπb −4πb c )+2πc ]−4(N −2)(−1+2(N −1)π(2Nb −c ))log2 2 2 2 3 2 2 3 2 2 +2(N −1)(log2)2, a =4(N −2)(−1+2(N −1)π(2Nb −c ))−4(N −1)log2, 3 2 2 a =2(N −1). 4 3 We need to compute inverse Laplace transform of integral z−1(logz−1)−α (α > 0 and z stands the complex ex- tceonmsiionngofrfoMm()l.ogWze)−noαt.eTthhiastatnhearretifiascatosfinpgeurltaurribtyatiaotnzbu=ta1s L−1[z−1(logz−1)−α]=ZMM−+i∞i∞ 2dπzieztzz−1(logz−1)−α, a consequencewe need anothercut in the z plane at [1,∞). Thus we restrict the location of the contour in the contour to be included within the strip 0 < ℜ[z] < 1. Perturbative region corresponds to the region t ≫ 1 and the asymptotic expansionoftheintegralreads α α(α+1) L−1[z−1(logz−1)−α]=t(logt+γ )−α 1+ + (1−ζ(2)/2)+··· . (15) E logt+γ (logt+γ )2 (cid:16) E E (cid:17) Thetransformoftermsofthetypez(logz)−α(loglogz)k (k = 1,2)canbereadilyobtainedfrom(15)byshiftingα → α+ǫ andthenexpandingtheresultinǫ. Inthismannerwearriveat C (N −2) logT −1/(N−2) 1 (N −1)(1−ζ(2)/2) χ χ¯ = t 1+ + 2πN (cid:16) 2 (cid:17) (cid:20) (N −2)logT (N −2)2(logT)2 2a1(1+ (N−N2−)l1ogT)−2(−log1T +loglogT(1+ (N−N2−)l1ogT)) a2+a3loglogT +a4(loglogT)2 + + +··· (N −2)2logT (N −2)4(logT)2 (cid:21) :=χ¯ , (16) pert where 2 T =t/C2eγE. (17) ξ 1 Atstrongcoupling,thesusceptibilityisobtainableinpow- χers=ofββ(1. +Th4eβr+esu1l2tβo2f +Bu7te2Nr+a+322aNndβ3C+om·i··[3).]Tghiveens,ususbtshtai-t Im[1/t]0 tuting(6) intothe series, we obtainthe seriesofχ expanded in1/M, -1 1 2 2(59N2+364N +480) χ= − + +··· . -2 M (N +2)M2 (N +2)2(N +4)M3 -2 -1 0 1 2 (18) Re[1/t] TheinverseLaplacetransformisreadilyobtainedbychanging M−n →tn/n!. Theresultreads FIG.1.Poledistributionofdiagonalχ forN =3atorders[3/3], str [4/4], ··· and [9/9]. The gray level of dots represents the order. 2t2 2(59N2+364N +480)t3 Lightestonescorrespondtopolesat6thandblackonesat18th. χ¯ = t− + +··· 2!(N +2) 3!(N +2)2(N +4) :=χ¯ . (19) str To study the scaling behavior of χ¯ from the series (19), Denoting the rational approximantas [m/n], we have ex- theseriesexpansionofχ¯isnotsufficientforaccurateresults, amined the pole distributionsof [n/n], [n+1/n−1], [n− though inverse Laplace transform substantially enlarged the 1/n + 1] and [n + n/n] cases. We found that [n/n] and effectiveregionofthetruncatedseries. Itrequiresexpansion [n+1/n−1] approximantshave no poles in the right-half up to quite large orders which no one performed yet. For- plane of t−1 for all N ≥ 3. Further, the pole distribution tunately the status of approximationtask is improvedby the from4thto18thordersatN = 3showsthatthepolesinthe use of Pade´ approximants. The Pade´ approximant method left-halfplane move towardthe origin as the order increases replaces the power series by the ratio of polynomials in t. (seeFig.1). Itishighlyconceivablethatattheinfinite order, The degrees m and n of the numerator and the denomina- the set of infinite poles collapse to the origin from the left. tormusthavesum whichagreeswiththe truncationorderof Thisisareflectionthatthetransformedseriesintisanentire χ¯ . Since, at large t, it is perturbativelyknown that χ¯ be- functionandthesetofdegeneratepolesrepresentsthepertur- str haves linearly in t with the logarithmic correction, we con- bativesingularityimpliedbylogarithmsin(16). Ontheother fineourselveswiththerationalfunctionsatdiagonalandnear- hand,[n−1/n+1]and[n+1/n]approximantsareplagued diagonalentriesinthePade´table. withpolesintheright-halfplane.Eventhosepolesaremerely 4 artifactsofPade´approximant,theybadlyinfluencethebehav- C = 0.012104achievesthe bestoptimization. Only atthis χ iorofχ¯[n−1/n+1] ontherealt-axis. Wethereforediscardthe value,bothofχ¯pert andχ¯[9/9] andtheirderivativesagreeata resultfrom[n−1/n+1]approximants. point.Inthisway,wecanestimateunknownnon-perturbative constant C for other values of N by using [m/n] = [9/9] χ 80 and[10/8]formsofapproximants. Theresultissummarized 70 inTableI. For all values of N at which Butera and Comi made the- 60 oreticalestimationofC , ourresultsare ingoodagreement. 50 χ −χ ThereisalsoMonteCarlodataforN =3,4and8.AtN =3, 40 thetworesults, C = 0.0146(10)[11]andC = 0.0130(5) χ χ 30 [12] were reported. At N = 4, C = 0.0329(16) in [13] −χ χ 20 −[9/9] andCχ = 0.0383(10)in [11]. AtN = 8, Cχ = 0.1037(4) χpert in [11] andC = 0.1028(2)in [12]. Thoughsmall discrep- 10 χ ancy remains, our estimates are consistent with these Monte 0 20 40 60 80 100 Carlo data. The values of [9/9] and [10/8] entries are close t TABLEI. Estimatedvaluesofthenon-perturbativeconstantC .On χ FIG.2. χ¯ (dotted)andχ¯ forN = 3. Inplotofχ¯ ,we estimationwehaveusedPade´-Borelapproximantsofβ¯atorder18th pert [9/9] pert usedforCχtheestimatedvalueCχ =0.012104. for the cases [9/9] and [10/8]. CBT means the estimation due to ButeraandComi[3]. N [9/9] [10/8] C BT 4 C χ =0.011 3 0.012104 0.012034 4 0.037018 0.036971 0.034 2 5 0.059836 0.059809 0.059 6 0.078058 0.078042 0.077 0 7 0.092404 0.092395 -2 C χ =0.012104 8 0.103830 0.103824 0.1035 9 0.113083 0.113079 C χ =0.013 -4 10 0.120703 0.120700 0.1212 0 20 40 60 80 100 20 0.157114 0.157113 FIG.3. Plotsof χ¯ −χ¯ at N = 3 for threevalues of C , [9/9] pert χ Cχ =0.011,0.012104and0.013. with each other for all N and this factindicates the stability oftheapproximation.Asawhole,thelevelofagreementwith After these observations, we compare Pade´ approximants existingresultsisimprovedthantheresultof[10]. at [n/n] and [n + 1/n − 1] to the 4-loop scaling behavior As demonstrated by the examination presented so far, in- χ¯ by using the exact result of C [9]. We have ascer- verseLaplacetransformonthe lattice spacingis foundto be pert ξ tainedthatPade´approximantsapproximatelyrecoverthescal- effectiveintheapproximationofthecontinuumlimit. Rather ing behavior for N ≥ 3. For example at N = 3, from the thantherealspaceofa, thedualspaceis convenientto con- plot of χ¯ and χ¯ in Fig. 2, we see the two functions sider scaling properties. The inverse Laplace transform pre- [9/9] pert are close with each otherfor C = 0.012104in the interval servesthe essentialinformationatscalingregionandcreates χ around t ∼ 40. To clarify the effect of C on the behav- anentire functionin t. Itisworthof exploringthe approach χ iors,wehaveplottedinFig. 3thedifferenceχ¯ −χ¯ at asanalternativeroutetothecontinuumlimitfromthestrong pert [9/9] C =0.011, 0.012104,0.013.Itisclearlyseenthatthevalue couplingexpansion. χ [1] H.Yamada,Phys.Rev.D84,105025(2011). P. Hasenfratz, and F. Niedermayer, Phys. Lett. B245, 529 [2] H.Yamada,J.ofPhys.G,36,025001(2009). (1990). [3] P.ButeraandM.Comi,Phys.Rev.B54,15828(1996). [10] H.Yamada,BrazilianJ.ofPhys.,toappear(arXiv: 1209.3396 [4] M.FalcioniandA.Treves,Nucl.Phys.B265,671(1986). [hep-lat]). [5] B.Alle´s,S.Caracciolo,A.PelissettoandM.Pepe,Nucl.Phys. [11] S.Caracciolo,R.G.Edwards,T.Mendes,A.PelissettoandA. B562,581(1999). D.Sokal,Nucl.Phys.B(Proc.Suppl.)47,763(1995). [6] S.CaraccioloandA.Pelissetto,Nucl.Phys.B455,619(1995). [12] B.B.Alle´s,A.BuonannoandG.Cella,Nucl.Phys.B500,513 [7] D.Shin,Nucl.Phys.B546,669(1999). (1997). [8] R.G.Edwards,E.Ferreira,J.GoodmanandA.D.Sokal,Nucl. [13] R.G.Edwards,E.Ferreira,J.GoodmanandA.D.Sokal,Nucl. Phys.B380,621(1992). Phys.B380,621(1992). [9] P. Hasenfratz, M. Maggiore and F. Niedermayer, Phys. Lett. B245,522(1990);

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.