Invariant Measures for Higher Rank Hyperbolic Abelian Actions (cid:0) y A(cid:0) Katok R(cid:0) J(cid:0) Spatzier Department of Mathematics Department of Mathematics The Pennsylvania State University University of Michigan University Park(cid:1) PA (cid:2)(cid:3)(cid:4)(cid:5)(cid:6) Ann Arbor(cid:1) MI (cid:7)(cid:4)(cid:2)(cid:5)(cid:8) Abstract WeinvestigateinvariantergodicmeasuresforcertainpartiallyhyperbolicandAnosov k k k actions of R (cid:0) Z and Z(cid:0)(cid:1) We show that they are either Haar measures or that every element of the action has zero metric entropy(cid:1) (cid:0) Introduction Actionsofhigherrankabelian groupsandsemigroupsoncompactsmoothmanifoldsdisplay a remarkable and not yet completely understood array of rigidity properties provided the action is su(cid:0)ciently hyperbolic(cid:1) Early indications of such phenomena can be found in the worksof N(cid:1) Koppel and R(cid:1) Sacksteder on commuting one(cid:2)dimensional and expanding maps (cid:3)(cid:4)(cid:5)(cid:6) (cid:7)(cid:5)(cid:8)(cid:1) A(cid:1) Katok and J(cid:1) Lewis established local and global di(cid:9)erential rigidity of the n(cid:1)(cid:0) n actions of Z on T by hyperbolic toral automorphisms (cid:3)(cid:4)(cid:4)(cid:8)(cid:1) Some of the phenomena including trivialization of the (cid:10)rst cohomology group(cid:6) absence of non(cid:2)trivial time changes(cid:6) local H(cid:11)older and di(cid:9)erential rigidity for a general class of standard abelian actions are studied in our papers (cid:3)(cid:4)(cid:12)(cid:6) (cid:4)(cid:13)(cid:6) (cid:4)(cid:14)(cid:8)(cid:1) For related developments see (cid:3)(cid:4)(cid:15)(cid:6) (cid:4)(cid:7)(cid:8)(cid:1) Anotherofthose rigidity properties is therelative scarcity ofinvariant Borel probability measures(cid:1) It was (cid:10)rst noticed by H(cid:1) Furstenberg in his landmark paper (cid:3)(cid:14)(cid:8) where he posed the following problem(cid:1) Furstenberg(cid:0)s Conjecture(cid:1) The only ergodic invariant measures for the semigroup of n m circle endomorphisms generated by multiplications by p and q where p (cid:0)(cid:16) q unless n (cid:16) m (cid:16) (cid:15) are Lebesgue measure and atomic measures concentrated on periodic orbits(cid:0) Furstenbergestablishes theweakertopological versionofthisstatementbyshowingthat all topologically transitive sets are either (cid:10)nite or the whole circle(cid:1) This was generalized (cid:0) Partially supported by NSF grant DMS (cid:0)(cid:1)(cid:2)(cid:3)(cid:0)(cid:0)(cid:4) y Partially supported by the NSF(cid:5)AMS Centennial Fellow (cid:4) February (cid:0)(cid:1) (cid:2)(cid:0)(cid:0)(cid:3) (cid:7) to the optimal results for semigroups of toral endomorphisms by D(cid:1) Berend (cid:3)(cid:7)(cid:6) (cid:12)(cid:8)(cid:1) E(cid:1) A(cid:1) Satayev proved that the only ergodic invariant measures are Lebesgue and atomic for largersemigroupsgeneratedbymultiplications byP(cid:17)n(cid:18)n(cid:2)Z(cid:0) whereP isanypolynomialwith integer coe(cid:0)cients (cid:3)(cid:7)(cid:19)(cid:8)(cid:1) The (cid:10)rst result directly pertaining to Furstenberg(cid:20)s conjecture was obtained by R(cid:1) Lyons using harmonic analysis(cid:1) He proved that the only invariant measure which makesthe multiplications exactendomorphisms is Lebesgue (cid:3)(cid:7)(cid:4)(cid:8)(cid:1) D(cid:1)Rudolph and A(cid:1) Johnson strengthened this result byreplacing the exactness condition with positive entropy for some and hence all elements of the action (cid:3)(cid:7)(cid:21)(cid:6) (cid:19)(cid:8)(cid:1) At the heart of their arguments lies (cid:1) (cid:1) a symbolic version of the natural extension of a Z(cid:2)(cid:2)action to a Z(cid:2)action(cid:1) For further developments in this speci(cid:10)c problem see (cid:3)(cid:13)(cid:6) (cid:21)(cid:8)(cid:1) Moregenerally(cid:6) onenoticesasharpcontrastbetweenAnosovdi(cid:9)eomorphismsand(cid:22)ows(cid:6) i(cid:1)e(cid:1) hyperbolic actions of Zand R(cid:6) which possess an abundance of invariant measures with very di(cid:9)erent ergodic properties(cid:6) including many measures with positive entropy(cid:6) and (cid:23)genuine(cid:24) hyperbolic actions of higher rank abelian groups and semigroups(cid:1) In the latter case(cid:6) all knownergodic invariant measuresare ofalgebraic natureunless(cid:6) like in an example constructedbyM(cid:1)Reesinanunpublished manuscript(cid:3)(cid:7)(cid:13)(cid:8)(cid:6)thereisaninvariantsubmanifold on which the action has a factor where it reduces to an action of a rank one group(cid:1) The question of deciding what hyperbolic (cid:17)Anosov(cid:18) or partially hyperbolic actions should be considered (cid:23)genuine(cid:24) is rather subtle(cid:1) Obviously(cid:6) in addition to faithfulness one should require theabsence ofrank onefactorsforthe action and all of its(cid:10)nite covers(cid:1) The central open question in the area is whether all such actions are of algebraic nature (cid:17)cf(cid:1) (cid:3)(cid:25)(cid:8)(cid:18)(cid:1) For the time being(cid:6) it is reasonable to list all known examples and bundle them together under the name of standard actions(cid:1) These include irreducible semigroups of partially hyperbolic endomorphisms of tori and (cid:17)infra(cid:18)nilmanifolds(cid:6) their natural extensions and suspensions(cid:6) Weyl chamber(cid:22)owsandrelatedsymmetric spaceexamples andtwistedWeyl chamber(cid:22)ows (cid:17)cf(cid:1) Sections (cid:12) and (cid:21) as well as (cid:3)(cid:4)(cid:12)(cid:8)(cid:18)(cid:1) Then the central open problem concerning invariant measures can be formulated in the following way(cid:1) All standard examples act on biquotients M of a Lie group G(cid:1) We call a submanifold (cid:3) M of M homogeneous if its preimage in G is a coset of a closed subgroup(cid:1) We call a measure on a (cid:10)nite union of homogeneous submanifolds Haar if its restriction to any of the homogeneous submanifolds can be constructed by projecting Haar measure on a coset in G to M(cid:1) k k k Main Conjecture(cid:1) Let (cid:0) be a standard Anosov action of Z(cid:2)(cid:1) Z or R (cid:1) k (cid:1) (cid:7) on a manifold M(cid:0) Then any (cid:0)(cid:2)invariant ergodic Borel probability measure (cid:1) is either Haar measure on a homogeneous real algebraic subspace or the support of (cid:1) is a homogeneous (cid:3) subspace M which (cid:3)bers in an (cid:0)(cid:2)invariant way over a manifold N such that the (cid:0)(cid:2)action on N reduces to a rank one action(cid:1) i(cid:0)e(cid:0) the action of Z(cid:2)(cid:1) Zor R(cid:0) In particular(cid:1) if the support of (cid:1) is all of M then (cid:1) is Haar measure on M(cid:0) The second alternative includes measures supported on closed orbits of the action(cid:1) The set of such orbits is always dense(cid:1) Aside from those measures(cid:6) the second alternative does not appear in the standard toral examples and appears to be rather exceptional in the February (cid:0)(cid:1) (cid:2)(cid:0)(cid:0)(cid:3) (cid:12) symmetric space examples(cid:1) Asimilarconjecturecanbestatedforamoregeneralclassofpartiallyhyperbolic actions where one may have to allow natural measures on some non(cid:2)homogeneous real algebraic submanifolds(cid:1) In this paper we consider invariant ergodic measures for certain homogeneous actions of higher rank abelian groups(cid:1) Our main assumption is similar to that of Rudolph and Johnson(cid:6) namely thatsome element has positive entropyw(cid:1)r(cid:1)t(cid:1) the measure in question(cid:1) In k the most general case(cid:6) we have to assume more(cid:1) For R (cid:2)actions for example(cid:6) it is su(cid:0)cient k to assume that every one(cid:2)parameter subgroup is ergodic(cid:1) The similar assumptions for Z(cid:2) k andZ(cid:2)(cid:2)actionsarethatoneparametersubgroupsofthesuspension andcorrespondinglythe suspension of the natural extension are ergodic(cid:1) In particular(cid:6) all mixing measures satisfy these assumptions(cid:1) These conditions exclude measures coming from Rees(cid:20)s examples since those measures are not ergodic with respect to certain one(cid:2)parameter subgroups(cid:1) Under those or slightly weaker assumptions(cid:6) we show in the toral and semisimple (cid:17)sym(cid:2) metric space(cid:18)cases thatthemeasureis Haarmeasure onahomogeneousalgebraic subspace (cid:17)Theorems (cid:14)(cid:1)(cid:4) and (cid:5)(cid:1)(cid:4)(cid:26) Corollaries (cid:14)(cid:1)(cid:7) and (cid:14)(cid:1)(cid:12)(cid:6) and analogous statements for the semisim(cid:2) ple case(cid:18)(cid:1) In many cases(cid:6) where there are no non(cid:2)trivial homogeneous algebraic invariant subspaces(cid:6) this implies that the measure is Haar measure on the whole space(cid:1) In the case of twisted Weyl chamber (cid:22)ows(cid:6) to achieve similar conclusions we need to assume in ad(cid:2) dition that the projection to the semisimple factor has positive entropy for some element (cid:17)Theorem (cid:5)(cid:1)(cid:7)(cid:18)(cid:1) For certain toral actions(cid:6) essentially the totally non(cid:2)symplectic actions(cid:6) the extra as(cid:2) sumptions can be removed(cid:1) Thus we obtain a generalization of the Rudolph and Johnson results which covers certain commuting expanding toral endomorphisms(cid:6) Anosov actions n(cid:1)(cid:0) n of higher rank subgroups of Z on T by automorphisms and many other examples (cid:17)Corollary (cid:21)(cid:1)(cid:13)(cid:18)(cid:1) The main idea of our argument is to decompose the invariant measure into conditionals along stable and unstable foliations of various elements of the action(cid:1) These foliations are homogeneous(cid:1) By looking at conditionals at various invariant subfoliations we show that some of those conditional measures are either atomic or Haar along a homogeneous subfoliation(cid:1) In the (cid:10)rst case(cid:6) the entropy of some and then every element is zero(cid:1) In the second case(cid:6) rigidity follows in the toral case from unique ergodicity of a linear (cid:22)ow on the torus on its orbit closures and in the semisimple and twisted cases from M(cid:1) Ratner(cid:20)s classi(cid:10)cation of invariant measures for homogenous actions of unipotent groups (cid:3)(cid:7)(cid:12)(cid:8)(cid:1) Let us point out that our method which is based on the local structure of stable and k unstable foliations for various elements breaks down for symplectic actions of Z on even(cid:27) dimensional tori(cid:1) Such actionsmaybe totallyirreducible (cid:17)noinvariantrationalsubtori(cid:18)(cid:26)ex(cid:2) (cid:1) (cid:3) plicit examplesofthatkindstartingfromZ actionsonT wereshowntousbyL(cid:1)Vaserstein(cid:1) However(cid:6)thelocalstructureofsuchactionsaspresentedbyLyapunovdecompositions(cid:6) Weyl chambers and Lyapunov hyperplanes (cid:17)see next section(cid:18) is undistinguishable from that of the products of rank one actions(cid:1) Acknowledgements (cid:1) We would like to thank H(cid:1) Furstenberg for alerting us to some errors in the original manuscript(cid:1) We would also like to express our deep gratitude to the February (cid:0)(cid:1) (cid:2)(cid:0)(cid:0)(cid:3) (cid:13) Mathematical Sciences Research Institute in Berkeley(cid:6) where this paper was written(cid:6) for providing a stimulating environment(cid:6) ideal working conditions and for (cid:10)nancial support(cid:1) The second author is also grateful for the hospitality of the Pennsylvania State University during several visits(cid:1) (cid:1) Lyapunov exponents k k k We will study Anosov and(cid:6) more generally(cid:6) partially hyperbolic actions of Z(cid:2)(cid:6) Z and R (cid:1) For a general discussion of such actions we refer to (cid:3)(cid:4)(cid:14)(cid:6) (cid:4)(cid:13)(cid:8)(cid:1) As we will see(cid:6) it is more k convenient for our approach to operate with R (cid:2)actions(cid:1) Therefore let us (cid:10)rst explain how k k to pass from an action of Z to R (cid:1) This is the so(cid:2)called suspension construction(cid:1) k k k k k Suppose Z acts on N(cid:1) Embed Z as a lattice in R (cid:1) Let Z act on R (cid:2) N by z(cid:17)x(cid:2)m(cid:18)(cid:16) (cid:17)x(cid:3)z(cid:2)z(cid:3)m(cid:18) and form the quotient k k M (cid:16) R (cid:2)N(cid:4)Z(cid:3) k k k Note that the action of R on R (cid:2)N by x(cid:3)(cid:17)y(cid:2)n(cid:18)(cid:16) (cid:17)x(cid:28)y(cid:2)n(cid:18)commutes with the Z(cid:2)action k k and therefore descends to M(cid:1) This R (cid:2)action is called the suspension of the Z(cid:2)action(cid:1) k k Note that any Z(cid:2)invariant measure on N lifts to a unique R (cid:2)invariant measure on the suspension(cid:1) k k Furthermore we can pass from a Z(cid:2)(cid:2)action to a Z(cid:2)action by a natural projective limit construction in an appropriate category(cid:1) This construction is explained in detail for toral endomorphisms in Section (cid:12) where it is called the solenoid construction(cid:1) As we will see in the appendix(cid:6) the solenoids are locally modeled on the products of certain p(cid:2)adic rings of k integers with R (cid:1) Let us also mention that any invariant measure on the torus canonically lifts to the solenoid(cid:1) k A crucial role in our analysis of R (cid:2)actions is played by the Lyapunov exponents(cid:1) Con(cid:2) k k sider a measure preserving ergodic action of R on a space X(cid:1) Suppose R acts by bundle automorphisms on a bundle over X with products of real and p(cid:2)adic vectorspaces as (cid:10)bers covering the given action on X(cid:1) For a single element a in the group and a vector v in the extension(cid:6) theLyapunovexponent (cid:5)(cid:17)a(cid:2)v(cid:18)is de(cid:10)ned in theusual way(cid:17)comparewith (cid:3)(cid:7)(cid:7)(cid:6) ch(cid:1) V(cid:8)(cid:18)(cid:1) There is a decomposition into Lyapunov subspaces of the extension a(cid:1)e(cid:1) such that the di(cid:9)erent Lyapunov exponents of a are given as Lyapunov exponents of a and some vector in the Lyapunov space(cid:1) Due to the commutativity of the group(cid:6) we can (cid:10)nd a common re(cid:10)nement of the Lyapunov decompositions of single elements of the group(cid:1) We will call this re(cid:10)ned decomposition the Lyapunov decomposition of the extension(cid:1) This allows us to consider the Lyapunov exponents (cid:5)(cid:17)(cid:2)v(cid:18) for v in a Lyapunov space of the extension as a real valued functional on the group(cid:1) Since the acting group is abelian(cid:6) the Lyapunov expo(cid:2) nents are linear functionals on the group(cid:1) A particular example of such an extension for a smooth system is its derivative(cid:1) We refer to (cid:3)(cid:5)(cid:8) for a more detailed exposition of Lyapunov exponents in this case(cid:1) k k When wespeak aboutLyapunov exponents ofa Z(cid:2)action oraZ(cid:2)(cid:2)action wewill always mean those for the suspension and correspondingly the suspension of the natural extension k of the given action(cid:1) Consider the (cid:10)nitely many hyperplanes in R de(cid:10)ned by the vanishing February (cid:0)(cid:1) (cid:2)(cid:0)(cid:0)(cid:3) (cid:14) of the functionals(cid:1) We will call these hyperplanes the Lyapunov hyperplanes(cid:1) Let us call an k element a(cid:4) R regular if it does not belong to the kernel of any non(cid:2)trivial functional(cid:1) All other elements are called singular(cid:1) Call a singular element generic if it belongs to only one k Lyapunov hyperplane(cid:1) Note that the tangent space to the R (cid:2)orbit de(cid:10)nes the identically (cid:15) Lyapunov exponent(cid:1) Let us emphasize that Lyapunov exponents may be proportional to each other with positive or negative coe(cid:0)cients(cid:1) In this case(cid:6) they de(cid:10)ne the same Lyapunov hyperplane(cid:1) k The Lyapunov hyperplanes divide R into (cid:10)nitely many open connected components(cid:6) called the Weyl chambers of the action(cid:1) Thus every regular element belongs to a unique Weyl chamber(cid:1) Every generic singular element belongs to the common boundary of exactly two Weyl chambers(cid:1) The system of Weyl chambers is symmetric w(cid:1)r(cid:1)t(cid:1) the origin(cid:1) Thus for any Weyl chamber C(cid:6) (cid:3)C is also a Weyl chamber(cid:1) k k Note that the Lyapunov hyperplanes cannot be are not derictly seen from a Z or Z(cid:2)(cid:2) k action as the hyperplanes are not rational in general(cid:1) This is one of the reasons making R actions a more convenient object of study(cid:1) In all homogeneous examples(cid:6) standard or not(cid:6) the Lyapunov exponents for the deriva(cid:2) tive extension are de(cid:10)ned and constant everywhere(cid:1) In particular(cid:6) they are independent of the invariant measure(cid:1) They determine a splitting of the tangent bundle (cid:17)which may havep(cid:2)adic componentsin thesolenoid case(cid:18)intoinvariant subbundles called theLyapunov spaces(cid:1) Let us emphasize that the Lyapunov spaces in the p(cid:2)adic directions correspond to m closed subgroups of some Zp (cid:1) The dimension of each Lyapunov space will be called the multiplicity of the exponent (cid:17)where dimension for a p(cid:2)adic direction is the dimension of corresponding p(cid:2)adic modules(cid:6) c(cid:1)f(cid:1) the Appendix(cid:18)(cid:1) The multiplicity of the (cid:15) exponent is at least k(cid:1) If the multiplicity of the (cid:15) exponent is exactly k(cid:6) we call the action Anosov(cid:1) A regular element for an Anosov action is called an Anosov element(cid:1) k (cid:2) (cid:1) Foranelement a(cid:4) R let us de(cid:10)ne the stable(cid:1) unstableand neutral distribution Ea (cid:2)Ea n and Ea as the sum of the Lyapunov spaces for which the value of the corresponding Lya(cid:2) punov exponent on a is negative(cid:6) positive and (cid:15) respectively(cid:1) The neutral distribution k for any element of an R (cid:2)action contains the tangent distribution to the orbit(cid:26) in the non(cid:2)Anosov partially hyperbolic case it also contains other directions corresponding to the Lyapunov exponents identically equal to (cid:15)(cid:1) We will be interested in the complement to these (cid:23)trivial(cid:24) directions in the neutral distribution of a singular element(cid:1) It is de(cid:10)ned as follows(cid:1) Note that the stable and unstable distributions are constant on a Weyl chamber(cid:1) Note furthermore that the sum of stable and unstable distributions is constant for all regular H elements(cid:1) We will denote this sum by E (cid:1) For singular elements the neutral distributions are bigger than for regular ones(cid:1) For example(cid:6) for a generic singular element the neutral distribution containsadirectionwhichisstableforoneadjacentWeylchamberandunstable for the other(cid:1) We will call the intersection of the neutral distribution for an element a H (cid:4) with the distribution E the center distribution of a and denote it by Ea(cid:1) The center distribution for any singular element a always contains directions on which the derivative of a acts isometrically w(cid:1)r(cid:1)t(cid:1) a canonical homogeneous metric(cid:1) We denote the distribution (cid:4) I of isometric directions inside Ea by Ea(cid:1) Let us note that the Lyapunov spaces in the standard toral examples always integrate February (cid:0)(cid:1) (cid:2)(cid:0)(cid:0)(cid:3) (cid:21) to a(cid:0)ne foliations (cid:17)possibly with a p(cid:2)adic part(cid:18)(cid:1) In the symmetric space examples(cid:6) some of the Lyapunov spaces may not be integrable (cid:17)cf(cid:1) the discussion in the proof of Theo(cid:2) rem (cid:5)(cid:1)(cid:4)(cid:18)(cid:1) However(cid:6) stable(cid:6) unstable and center distributions as well as their intersections (cid:17)for di(cid:9)erent elements(cid:18) are always integrable and integrate to homogeneous foliations(cid:1) In fact(cid:6) the stable and unstable foliations of any element are always the orbit foliations of a unipotent subgroup(cid:1) For an element a we will denote the integral foliations of the stable(cid:6) (cid:2) (cid:1) (cid:4) I (cid:2) (cid:1) (cid:4) I unstable(cid:6) center and isometric distributions Ea (cid:2)Ea(cid:2)Ea and Ea by Wa (cid:2)Wa (cid:2)Wa and Wa(cid:1) (cid:2) Toral endomorphisms(cid:3) solenoids and their suspensions k Consider an embedding (cid:0) of Z(cid:2) into the semigroup of non(cid:2)singular m(cid:2)m integer matri(cid:2) k m ces(cid:1) Then Z(cid:2) acts on the torus T by endomorphisms(cid:1) Note that this includes actions k k of Z by toral automorphisms by restricting to Z(cid:2)(cid:1) We will always assume that every k non(cid:2)trivial element of Z(cid:2) acts ergodically with respect to Haar measure(cid:6) or equivalently(cid:6) k that no non(cid:2)trivial element of Z(cid:2) has eigenvalues that are roots of unity(cid:1) Such an action is called irreducible if no (cid:10)nite cover splits as a product(cid:1) Irreducible actions by ergodic toral endomorphisms are called standard actions(cid:1) Furthermore(cid:6) in agreement with the terminol(cid:2) k ogy of the previous section(cid:6) we will call (cid:0) Anosov if the image of Z(cid:2) contains matrices without eigenvalues on the unit circle(cid:1) Note that if the actions admits a factor on which the action reduces to an action of Z or Z(cid:2)(cid:6) then invariant measures cannot be rigid(cid:1) In this case however(cid:6) any element in the kernel of the action on the factor has (cid:4) as an eigenvalue(cid:1) Thus actions by ergodic toral automorphismsdonotadmitsuchfactors(cid:1) Conjecturally(cid:6) thepresence of(cid:23)rankonefactors(cid:24) is the only obstruction to rigidity(cid:1) (cid:0) k To make these actions invertible we will introduce the natural extension (cid:0) (cid:29) Z (cid:5) Aut(cid:17)S(cid:18) of (cid:0) where S is the solenoid obtained from the torus as follows(cid:1) k Let A(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)Ak be the images of the generators of Z(cid:2)(cid:1) Then we get a projective system H Hj (cid:1) (cid:1) m (cid:1)(cid:0)(cid:1)T HA(cid:0) (cid:0) (cid:1) (cid:1) Hj (cid:1) (cid:1) m H (cid:1) (cid:1) (cid:0)(cid:1)T Hj (cid:0) (cid:1) m Ak (cid:1)(cid:1)(cid:0)(cid:1)T (cid:0) where the maps are given by the Ai(cid:1) We let the solenoid S be the projective limit of this system in the category of compact topological groups(cid:1) k m Z The solenoid can be realized as a subset of (cid:17)T (cid:18) as follows(cid:1) Let (cid:6)i be the i(cid:20)th shift k on Z i(cid:1)e(cid:1) (cid:6)i(cid:17)j(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)ji(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)jk(cid:18)(cid:16) (cid:17)j(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)ji(cid:28)(cid:4)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)jk(cid:18)(cid:1) Then set k m Z S (cid:16) f(cid:7) (cid:4) (cid:17)T (cid:18) j (cid:7)(cid:0)ij (cid:16) Ai(cid:7)jg(cid:3) k m Z The solenoid is a compact subgroup of (cid:17)T (cid:18) with the product topology(cid:1) Its dual m m is a subgroup of Q (cid:6) more precisely it is contained in (cid:17)Z(cid:17)p(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)pl(cid:18)(cid:18) where p(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)pl are those prime integers which occur in the prime decomposition of the determinant of at least one of the matrices A(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)Ak and Z(cid:17)p(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)pl(cid:18) is the subgroup of rational numbers February (cid:0)(cid:1) (cid:2)(cid:0)(cid:0)(cid:3) (cid:5) k whose denominators are only divisible by p(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)pl(cid:1) Note that Z acts on S naturally by (cid:0) m coordinate shifts(cid:1) Let us denote this action by (cid:0) (cid:1) The solenoid is a (cid:10)bration over T with Cantor set (cid:10)bers by mapping (cid:7) (cid:4) S to (cid:7)(cid:17)(cid:15)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)(cid:15)(cid:18)(cid:1) The projection intertwines the (cid:0) k (cid:0) (cid:2)action restricted to Z(cid:2) with (cid:0)(cid:1) Note that a local cross(cid:2)section to this (cid:10)bration is given by the local connected component of (cid:7)(cid:1) We will call this transversal the toral direction at (cid:7)(cid:1) Note that the projection is one(cid:2)to(cid:2)one if and only if all Ai are invertible(cid:1) (cid:0) Every (cid:0)(cid:2)invariant measure lifts in a unique fashion to an (cid:0) (cid:2)invariant measure on S(cid:1) There is a natural H(cid:11)older structure on the solenoid which comes from any metric on the product of the form (cid:3) dTm(cid:17)(cid:7)j(cid:2)(cid:7)j(cid:3)(cid:18) dc(cid:17)(cid:7)(cid:2)(cid:7)(cid:18)(cid:16) kjk c j X where where c (cid:8) (cid:4) and dTm is the standard metric on the torus(cid:1) Note that the Ho(cid:11)lder structure is independent of c(cid:1) This also allows us to de(cid:10)ne exponential convergence along (cid:0) the (cid:10)ber and hence stable(cid:6) unstable and neutral spaces for the elements of (cid:0) (cid:1) Formostofthepaper(cid:6)andinparticularfortheMainTheorem(cid:14)(cid:1)(cid:4)(cid:6)itissu(cid:0)cienttohave these rough dynamical structures(cid:1) For certain applications in Section (cid:21) however(cid:6) we need to de(cid:10)ne speci(cid:10)c exponential speeds of expansion and contraction(cid:6) in the p(cid:2)adic directions i(cid:1)e(cid:1) Lyapunov exponents(cid:1) To do this(cid:6) we need a more subtle metric structure on S which requires an alternative(cid:6) more arithmetic description of the solenoid(cid:1) Its main advantage is thatwecancanonically de(cid:10)ne aspecial metricdonS which givesaLipschitz structureonS and de(cid:10)nes Lyapunov exponents on S which agree with the standard Lyapunov exponents in the toral direction(cid:1) The metric d is Ho(cid:11)lder equivalent to dc(cid:1) Since these issues are irrelevant to the invertible case and the Main Theorem(cid:6) we only give this description in an appendix(cid:1) (cid:4) Conditional measures and entropy Let us brie(cid:22)y recall how a probability measure (cid:9) on M determines a system of conditional measures on a foliation F(cid:1) Denote by B the Borel (cid:6)(cid:2)algebra on M(cid:1) A measurable partition (cid:10) of M is a partition of M such that(cid:6) up to a set of measure (cid:15)(cid:6) the quotient space M(cid:4)(cid:10) is separated by a countable number of measurable sets (cid:3)(cid:7)(cid:14)(cid:8)(cid:1) For every x in a set of full (cid:1) (cid:9)(cid:2)measure there is a probability measure (cid:9)x de(cid:10)ned on (cid:10)(cid:17)x(cid:18)(cid:6) the element of (cid:10) containing x(cid:6) and satisfying the following properties(cid:29) If B(cid:1) is the sub(cid:2)(cid:6)(cid:2)algebra of B whose elements are (cid:1) unions of elements of (cid:10)(cid:6) and A (cid:6)M is a measurable set(cid:6) then x (cid:7)(cid:5) (cid:9)x(cid:17)A(cid:18) is B(cid:1)(cid:2)measurable (cid:1) (cid:1) and (cid:9)(cid:17)A(cid:18)(cid:16) (cid:9)x(cid:17)A(cid:18)(cid:9)(cid:17)dx(cid:18)(cid:1) These conditions determine the measures (cid:9)x uniquely(cid:1) Given a continuous foliation F(cid:6) let F(cid:17)x(cid:18) denote the leaf through x(cid:1) The partition R into the leaves of F is not a measurable partition in general(cid:1) (cid:17)Although the point of the Proposition below as well as of the most of the arguments in Section (cid:14) is that in the zero entropy situation they in fact are measurable(cid:1)(cid:18) Let (cid:6)(cid:17)F(cid:18) denote the (cid:6)(cid:2)algebra of all sets that consist a(cid:1)e(cid:1)(cid:1) of complete leaves of F(cid:1) It corresponds to a unique measurable partition which is called the measurable hull of F(cid:6) and is denoted by (cid:10)(cid:17)F(cid:18)(cid:1) It is the (cid:10)nest measurable partition whose elements consist a(cid:1)e(cid:1) from the entire leaves of F(cid:1) Unless it is trivial(cid:6) it is usually hard to describe geometrically(cid:1) We will be primarily interested in the intergal February (cid:0)(cid:1) (cid:2)(cid:0)(cid:0)(cid:3) (cid:19) foliations of various distributions described in Section (cid:7)(cid:1) Conditional measures on leaves F of such a foliation are (cid:6)(cid:2)(cid:10)nite locally (cid:10)nite measures (cid:9)x de(cid:10)ned up to a multiplicative constant(cid:1) In other words(cid:6) for almost every x (cid:4) M and for open sets A(cid:2)B (cid:6) F(cid:17)x(cid:18) with F (cid:2)x(cid:5)A(cid:6) compact closures one can canonically de(cid:10)ne the ratio (cid:2)xF(cid:5)B(cid:6)(cid:1) In the homogenous case in question as well as in some other cases this can be done as follows(cid:1) Take a small homogenous transversal T to F(cid:17)x(cid:18) at x and translate it to cover a neighborhood of large enough disc D in F(cid:17)x(cid:18) which contains both A and B(cid:1) Thus in this neighborhood we have a product structure modeled on D(cid:2)T(cid:1) There is also a metric which is translation invariant(cid:1) Let T(cid:17)(cid:11)(cid:18)(cid:6) T be the (cid:11) ball around x(cid:1) Then F (cid:9)x(cid:17)A(cid:18) (cid:9)(cid:17)A(cid:2)T(cid:17)(cid:11)(cid:18)(cid:18) F (cid:16) lim (cid:3) (cid:9)x(cid:17)B(cid:18) (cid:3)(cid:4)(cid:4) (cid:9)(cid:17)B (cid:2)T(cid:17)(cid:11)(cid:18)(cid:18) There is an alternative way of describing conditional measures which works in a more general situation(cid:1) Call a measurable partition (cid:10) subordinate to F if for (cid:9)(cid:2)a(cid:1)e(cid:1) x we have (cid:10)(cid:17)x(cid:18) (cid:6) F(cid:17)x(cid:18) and (cid:10)(cid:17)x(cid:18) contains a neighborhood of x open in the submanifold topology of F(cid:17)x(cid:18)(cid:1) Note that two di(cid:9)erent partitions subordinate to the same foliation determine conditional measures that are scalar multiples when restricted to the intersection of an element of one partition with an element of the other partition(cid:1) Thus there is a locally F (cid:10)nite measure (cid:9)x on F(cid:17)x(cid:18) uniquely de(cid:10)ned up to scaling that restricts to a scalar multiple F of a conditional measure for each partition subordinate to F(cid:1) The measures (cid:9)x form the system of conditional measures on the leaves of F(cid:1) In more general situations which do not concern us in this paper a certain care is needed to justify the fact that conditional measures are really correctly de(cid:10)ned up to a constant scalar multiple(cid:1) However in order to show connections between trivialization of conditional measures it is enough to see that conditional measures are de(cid:10)ned up to a scalar function which is of course quite obvious from the preceeding construction in a fairly great generality(cid:1) Of course(cid:6) at the end this is not surprising at all since the conclusion will be that the conditional measures are atomic(cid:6) hence (cid:10)nite and can be normalised so that the partition into leaves is measurable(cid:30) k Given a (cid:4) R and an a(cid:2)invariant measure (cid:1)(cid:6) we denote the partition into ergodic components of (cid:1) under a by (cid:10)a(cid:1) Let us recall the relation between conditional measures and entropy(cid:1) It is well(cid:2)known that entropy is related to exponential contraction and expansion(cid:1) In order to accomodate solenoids(cid:6) we will formulate a criterion for the vanishing of metric entropy in the context of foliated compact metric spaces(cid:1) n The underlying spaces forour actions are locally isometric with the product of some R mp with (cid:10)nitely many Qp (cid:1) All the invariant distributions and associated foliations are also locally isometric to such products(cid:1) Recall that the box dimension of a metric space (cid:17)M(cid:2)d(cid:18) is given by log(cid:17)Nd(cid:17)(cid:12)(cid:18)(cid:18) limsup(cid:3) (cid:4)(cid:4)(cid:4) log(cid:17)(cid:12)(cid:18) whereNd(cid:17)(cid:12)(cid:18)isthemaximumnumberofdisjoint (cid:12)(cid:2)balls inM(cid:1) Let(cid:12)(cid:8) (cid:13) (cid:8) (cid:15)andletNd(cid:17)(cid:12)(cid:2)(cid:13)(cid:18) be the maximum number of disjoint (cid:13)(cid:2)balls in any (cid:12)(cid:2)ball(cid:1) there is a constant D (cid:8) (cid:15) such February (cid:0)(cid:1) (cid:2)(cid:0)(cid:0)(cid:3) (cid:25) that for all small (cid:12) (cid:8) (cid:13) (cid:8) (cid:15)(cid:6) logNd(cid:17)(cid:12)(cid:2)(cid:13)(cid:18) (cid:4) (cid:14) D(cid:3) log(cid:17)(cid:5)(cid:18) Let (cid:17)F(cid:2)dF(cid:18) and (cid:17)T(cid:2)dT(cid:18) be metric spaces(cid:1) A foliation F of a metric space (cid:17)M(cid:2)d(cid:18)(cid:6) modeled on F with transversal T is adisjoint decomposition ofM intosubspaces Fx(cid:6) called the leaves of F such that each Fx is the Lipschitz image of F and for every point x (cid:4) X(cid:6) there is a neighborhood U such that U is bi(cid:2)Lipschitz with the metric product UF (cid:2)UT where Uf and UT are neighborhoods in F and T respectively(cid:6) and where the bi(cid:2)Lipschitz map takes UF (cid:2)ftg for all t (cid:4) UT to the intersection of a leaf of F with U(cid:1) We say that a pair of foliations F and G of M de(cid:10)ne a local product structure if F is modelled on F with transversal T and G is modelled on T with transversal F and the bi(cid:2)Lipschitz maps de(cid:10)ned locally respect both foliations simultaneously(cid:1) Proposition (cid:2)(cid:3)(cid:4) Let M be a compact metric space of (cid:3)nite local box dimension(cid:0) Suppose F and G are foliations on M that de(cid:3)ne a local product structure(cid:0) Let (cid:15) (cid:29) M (cid:5) M be a bi(cid:2)Lipschitz homeomorphism preserving F and G(cid:1) which locally strictly contracts F and such that for every (cid:12) (cid:8) (cid:15) there is a C(cid:4) (cid:8) (cid:15) such that for all n (cid:1) (cid:15) and y (cid:4) G(cid:17)x(cid:18) the (cid:1)n (cid:1)n (cid:4)n distance d(cid:17)(cid:15) (cid:17)y(cid:18)(cid:2)(cid:15) (cid:17)x(cid:18)(cid:18)(cid:8) C(cid:4)e d(cid:17)x(cid:2)y(cid:18) if d(cid:17)x(cid:2)y(cid:18)(cid:14) (cid:12)(cid:0) F Then(cid:1) if (cid:1) is a Borel probability measure on M(cid:1) and (cid:1)x its system of conditional mea(cid:2) F F sures(cid:1) the metric entropy h(cid:6) (cid:16) (cid:15) if and only if for (cid:1)(cid:2)a(cid:0)e(cid:0) x(cid:1) (cid:1)x is atomic(cid:0) In this case(cid:1) (cid:1)x is supported on a single point(cid:0) In this paper(cid:6) we will only need this statement in one direction(cid:6) namely that the metric F entropy is (cid:15) if the conditional measures (cid:1)x are atomic(cid:1) We will describe the proof of this F direction(cid:1) First(cid:6) note that the conditional measure (cid:1) is supported on a single point if it is atomic(cid:1) Indeed(cid:6) if x is an atom of the conditional measure(cid:6) there is a small neighborhood F F F U of x in the leaf such that (cid:1)x(cid:17)U (cid:3) fxg(cid:18) (cid:14) (cid:12)(cid:1)x(cid:17)fxg(cid:18)(cid:1) Pushing (cid:1)x backward and using F Poincar(cid:31)e recurrence(cid:6) we see that for a typical x(cid:6) (cid:1)x is concentrated at x(cid:1) F Now assume that (cid:1)x is supported in a single point(cid:1) Then we can (cid:10)nd a set of full measure which intersects every F(cid:2)leaf in at most one point(cid:1) In particular(cid:6) the intersection of this set with a neighborhood with local product structure is the graph of a measurable function de(cid:10)ned on an open set U (cid:6) T with values in an open set V (cid:6) F(cid:1) By Lusin(cid:20)s theorem(cid:6) there is a compact set K of arbitrarily large measure which is a (cid:10)nite union of graphs of continuous maps from subsets of T to F(cid:1) Let L be a Lipschitz constant for (cid:15)(cid:1) n Pick an n and (cid:13) (cid:8) (cid:15) such that L (cid:13) is small(cid:1) Consider a partition (cid:10) of M with two types of elements(cid:29) intersections of sets of diameter less than (cid:13) with K and with M nK(cid:1) It is (cid:0) (cid:1)n well known that h(cid:17)(cid:15)(cid:2)(cid:10)(cid:18) (cid:8) n H(cid:17)(cid:10)(cid:2)(cid:15) (cid:10)(cid:18)(cid:1) The latter quantity is estimated separately for (cid:1)n the preimages under (cid:15) of the two types of elements of (cid:10)(cid:1) In both cases(cid:6) we just estimate (cid:1)n the contribution of each element c (cid:4) (cid:15) (cid:10) by the number of elements of (cid:10) which have non(cid:2) (cid:1)n (cid:4)n empty intersections with c(cid:1) Forc in (cid:15) K(cid:6) weestimate the diameter ofc by C(cid:4)e (cid:13)(cid:6) using the assumption of the proposition(cid:1) Since the local box dimension is (cid:10)nite(cid:6) the number of non(cid:2)trivial intersections grows at most exponentially in n with arbitrarily small exponent(cid:1) (cid:1)n For (cid:15) (cid:17)c(cid:18) for c (cid:4) (cid:10) where c (cid:6) M nK(cid:6) we have a uniform exponential estimate of the size and hence number of nontrivial intersections using the Lipschitz constant of (cid:15)(cid:1) Since February (cid:0)(cid:1) (cid:2)(cid:0)(cid:0)(cid:3) (cid:4)(cid:15) the measure ofMnK is small(cid:6) the contribution of such elements to the conditional entropy is small(cid:1) (cid:5) The main theorem for toral endomorphisms In all standard toral examples(cid:6) let us consider the tangent bundle to the phase space and de(cid:10)ne the derivative action(cid:1) (cid:17)In the solenoid case(cid:6) this will include some non(cid:2)Archimedean components(cid:6) as explained in the Appendix(cid:1) All the arguments in this section however only usetheArchimedean directions(cid:1) Thuswemayjustconsidertherealtangentbundle overthe solenoidinthissection(cid:1)(cid:18) Thederivativeisalinearextensionoftheaction(cid:6)andtheLyapunov exponents are given by logarithms of the appropriate valuations of the eigenvalues(cid:1) By commutativitywecan(cid:10)ndajointsplittingintosubspacesonwhichtheLyapunovexponents are constant for each element(cid:1) This is the decomposition into Lyapunov spaces described in Section (cid:7)(cid:1) Let us recall again that there is a one(cid:2)to(cid:2)one correspondence between Borel probability k ergodic invariant measures for an action of Z(cid:2) by toral endomorphisms and those for the k R (cid:2)action which is the suspension ofthe solenoid extension of the toralaction(cid:1) Since in our k arguments we will be dealing mostly with R (cid:2)actions obtained as suspensions of solenoid k extensions we will adopt the following notation(cid:1) If (cid:1) is an invariant measure for an R (cid:2) action then (cid:1)Tm will denote the corresponding measure for the toral action(cid:1) Obviously(cid:6) k every element of the R (cid:2)action has zero entropy w(cid:1)r(cid:1)t(cid:1) (cid:1) if and only if every element of the corresponding Zk(cid:2)(cid:2)action has zero entropy w(cid:1)r(cid:1)t(cid:1) (cid:1)Tm(cid:1) The following theorem is our principal technical result in the toral case(cid:1) k Theorem (cid:5)(cid:3)(cid:4) Let (cid:0) be a R (cid:2)action with k (cid:1) (cid:7) induced from a standard action by toral endomorphisms(cid:0) Assume that (cid:1) is an ergodic invariant measure for (cid:0) such that there k (cid:2) are generic singular elements a(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)ak and a regular element b (cid:4) R with Eb totally Archimedean such that (cid:2) (cid:4) (cid:2) (cid:17)(cid:9)(cid:18) Eb (cid:16) (cid:17)Eai (cid:10)Eb (cid:18) i X (cid:4)where the sum need not be direct(cid:5) and such that (cid:4) (cid:2) (cid:17)(cid:9)(cid:9)(cid:18) (cid:10)ai (cid:8) (cid:10)(cid:17)Eai (cid:10)Eb (cid:18)(cid:3) Theneither (cid:1)Tm isHaar measureona rationalsubtorus or every elementof(cid:0) has (cid:6) entropy w(cid:0)r(cid:0)t(cid:0) (cid:1)(cid:0) The genericity of the ai is not actually needed as one can easily see from the proof of the theorem(cid:1) Remark (cid:1) This theorem generalizes to suspensions of groups of solenoid automorphisms more general than those obtained from extensions of groups of toral endomorphisms (cid:17)cf(cid:1) Example (cid:12)(cid:1)(cid:21)(cid:18)(cid:1) The principal di(cid:9)erence in the formulation is that the stable distribution (cid:2) Eb is not assumed to be totally Archimedean(cid:1) Conditions (cid:17) (cid:18) and (cid:17) (cid:18) remain the same(cid:1) The di(cid:9)erences in the proof are not very signi(cid:10)cant(cid:6) and will be left to the reader(cid:1)
Description: