ebook img

Introductory Quantum Mechanics: A Traditional Approach Emphasizing Connections with Classical Physics PDF

641 Pages·2017·8.002 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introductory Quantum Mechanics: A Traditional Approach Emphasizing Connections with Classical Physics

UNITEXT for Physics Paul R. Berman Introductory Quantum Mechanics A Traditional Approach Emphasizing Connections with Classical Physics UNITEXT for Physics Serieseditors PaoloBiscari,Milano,Italy MicheleCini,Roma,Italy AttilioFerrari,Torino,Italy StefanoForte,Milano,Italy MortenHjorth-Jensen,Oslo,Norway NicolaManini,Milano,Italy GuidoMontagna,Pavia,Italy OresteNicrosini,Pavia,Italy LucaPeliti,Napoli,Italy AlbertoRotondi,Pavia,Italy UNITEXTforPhysicsseries,formerlyUNITEXTCollanadiFisicaeAstronomia, publishestextbooksandmonographsinPhysicsandAstronomy,mainlyinEnglish language, characterized of a didactic style and comprehensiveness. The books publishedinUNITEXTforPhysicsseriesareaddressedtograduateandadvanced graduate students, but also to scientists and researchers as important resources for theireducation,knowledgeandteaching. Moreinformationaboutthisseriesathttp://www.springer.com/series/13351 Paul R. Berman Introductory Quantum Mechanics A Traditional Approach Emphasizing Connections with Classical Physics 123 PaulR.Berman UniversityofMichigan AnnArbor,MI,USA ISSN2198-7882 ISSN2198-7890 (electronic) UNITEXTforPhysics ISBN978-3-319-68596-0 ISBN978-3-319-68598-4 (eBook) https://doi.org/10.1007/978-3-319-68598-4 LibraryofCongressControlNumber:2017954936 ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Iwouldliketodedicatethisbookto DebraBerman,mywifeof30+years, forhersupportandpositiveoutlook onlife. Preface This book is based on junior and senior level undergraduate courses that I have givenatbothNewYorkUniversityandtheUniversityofMichigan.Youmightask, in heavens name, why anyone would want to write yet another introductory text on quantum mechanics. And you would not be far off base with this assessment. Therearemanyexcellentintroductoryquantummechanicstexts.Moreover,withthe materialavailableontheinternet,youcanaccessalmostanytopicofyourchoosing. Therefore,Imustagreethatthereareprobablynocompellingreasonstopublishthis text.Ihaveundertakenthistaskmainlyattheurgingofmystudents,whofeltthatit wouldbehelpfultostudentsstudyingquantummechanics. For the most part, the approach taken is a traditional one. I have tried to emphasizetherelationshipofthequantumresultswiththoseofclassicalmechanics and classical electromagnetism. In this manner, I hope that students will be able togainphysicalinsightintothenatureofthequantumresults.Forexample,inthe studyofangularmomentum,youwillseethattheabsolutesquaresofthespherical harmonics can be given a relatively simple physical interpretation. Moreover, by using the effective potential in solving problems with spherical symmetry, I am able to provide a physical interpretation of the probability distributions associated with the eigenfunctions of such problems and to interpret the structures seen in scatteringcrosssections.Ialsotrytostressthetime-dependentaspectsofproblems in quantum mechanics, rather than focus simply on the calculation of eigenvalues andeigenfunctions. Thebookisintendedtobeusedinayear-longintroductorycourse.Chapters1– 13 or 1–14 can serve as the basis for a one-semester course. I do not introduce Dirac notation until Chap.11. I do this so students can try to master the wave function approach and its implications before engaging in the more abstract Dirac formalism. Dirac notation is developed in the context of a more general approach in which different representations, such as the position and momentum representations, appear on an equal footing. Most topics are treated at a level appropriatetoanundergraduatecourse.Sometopics,however,suchasthehyperfine interactions described in the appendix of Chap.21, are at a more advanced level. Theseareincludedforreferencepurposes,sincetheyarenottypicallyincludedin vii viii Preface undergraduate (or graduate) texts. There is a web site for this book, http://www- personal.umich.edu/~pberman/qmbook.html, that contains an Errata, Mathematica subroutines,andsomeadditionalmaterial. Theproblemsformanintegralpartofthebook.Manyarestandardproblems,but thereareafewthatmightbeunique tothistext.Quantum mechanics isadifficult subjectforbeginningstudents.Ioftentellthemthatfallingbehindinacoursesuch as this is a disease from which it is difficult to recover. In writing this book, my foremost task has been to keep the students in mind. On the other hand, I know that no textbook is a substitute for a dedicated instructor who guides, excites, and motivatesstudentstounderstandthematerial. IwouldliketothankBillFord,AaronLeanhardt,PeterMilonni,MichaelRevzen, AlbertoRojo,andRobinShakeshaftfortheirinsightfulcomments.Iwouldalsolike toacknowledgethemanydiscussionsIhadwithDuncanSteelontopicscontained in this book. Finally, I am indebted to my students for their encouragement and positive (as well as negative) feedback over the years. I am especially grateful to theFulbrightfoundationforhavingprovidedthesupportthatallowedmetooffera courseinquantummechanicstostudentsattheCollegeofScienceandTechnology attheUniversityofRwanda.Myinteractionswiththesestudentswillalwaysremain anindeliblechapterofmylife. AnnArbor,MI,USA PaulR.Berman Contents 1 Introduction................................................................. 1 1.1 ElectromagneticWaves .............................................. 2 1.1.1 RadiationPulses........................................... 4 1.1.2 WaveDiffraction .......................................... 6 1.2 BlackBodySpectrum:OriginoftheQuantumTheory ............ 7 1.3 PhotoelectricEffect .................................................. 9 1.4 BohrTheory.......................................................... 10 1.5 DeBroglieWaves .................................................... 13 1.6 TheSchrödingerEquationandProbabilityWaves.................. 15 1.7 MeasurementandSuperpositionStates ............................. 17 1.7.1 What Is Truly Strange About Quantum Mechanics:SuperpositionStates......................... 17 1.7.2 TheEPRParadoxandBell’sTheorem .................. 18 1.8 Summary.............................................................. 21 1.9 Appendix:BlackbodySpectrum..................................... 21 1.9.1 BoxNormalizationwithFieldNodesontheWalls...... 22 1.9.2 PeriodicBoundaryConditions............................ 23 1.9.3 Rayleigh-JeansLaw....................................... 24 1.9.4 Planck’sSolution.......................................... 24 1.9.5 ApproachtoEquilibrium ................................. 27 1.10 Problems.............................................................. 28 2 MathematicalPreliminaries............................................... 33 2.1 ComplexFunctionofaRealVariable............................... 33 2.2 FunctionsandTaylorSeries ......................................... 34 2.2.1 FunctionsofOneVariable................................ 34 2.2.2 ScalarFunctionsofThreeVariables...................... 36 2.2.3 VectorFunctionsofThreeVariables ..................... 37 2.3 VectorCalculus....................................................... 38 2.4 ProbabilityDistributions............................................. 39 2.5 FourierTransforms................................................... 43 ix x Contents 2.6 DiracDeltaFunction................................................. 46 2.7 Problems.............................................................. 49 3 Free-ParticleSchrödingerEquation:WavePackets ................... 53 3.1 ElectromagneticWaveEquation:Pulses............................ 54 3.2 Schrödinger’sEquation .............................................. 55 3.2.1 WavePackets.............................................. 56 3.2.2 Free-ParticlePropagator .................................. 62 3.3 Summary.............................................................. 65 3.4 Problems.............................................................. 65 4 Schrödinger’sEquationwithPotentialEnergy:Introduction toOperators................................................................. 69 4.1 HamiltonianOperator................................................ 69 4.2 Time-IndependentSchrödingerEquation........................... 72 4.3 Summary.............................................................. 73 4.4 Appendix:SchrödingerEquationinThreeDimensions............ 73 4.5 Problems.............................................................. 75 5 Postulates and Basic Elements of Quantum Mechanics: PropertiesofOperators.................................................... 77 5.1 HermitianOperators:EigenvaluesandEigenfunctions............. 78 5.1.1 EigenvaluesReal.......................................... 80 5.1.2 Orthogonality.............................................. 81 5.1.3 Completeness.............................................. 85 5.1.4 ContinuousEigenvalues .................................. 86 5.1.5 RelationshipBetweenOperators ......................... 88 5.1.6 CommutatorofOperators................................. 90 5.1.7 UncertaintyPrinciple...................................... 94 5.1.8 ExamplesofOperators.................................... 96 5.2 BacktotheSchrödingerEquation................................... 99 5.2.1 HowtoSolvetheTime-DependentSchrödinger Equation ................................................... 99 5.2.2 Quantum-MechanicalProbabilityCurrentDensity...... 102 5.2.3 OperatorDynamics........................................ 104 5.2.4 SumofTwoIndependentQuantumSystems ............ 105 5.3 Measurements in Quantum Mechanics: “Collapse” oftheWaveFunction ................................................ 106 5.4 Summary.............................................................. 108 5.5 Appendix:FromDiscretetoContinuousEigenvalues.............. 109 5.6 Problems.............................................................. 110 6 ProblemsinOne-Dimension:GeneralConsiderations,Infinite Well Potential, Piecewise Constant Potentials, and Delta FunctionPotentials......................................................... 115 6.1 GeneralConsiderations .............................................. 115 6.1.1 PotentialsinwhichV.x/>0andV.˙1/(cid:2)0......... 116

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.