INTRODUCTORY FLUID MECHANICS for Physicists and Mathematicians Frontispiece The first observation of shock waves generated by the passage of a bullet throughairbyMachandSalcher(1887).Behindtheprimaryshockcanbeseenthefollowing rarefaction. Note also the turbulet wake leaving the rear of the bullet. Since the bullet was blunt the shock is slightly detached, although this cannot be clearly seen. The two vertical lines are for timing. The photograph was taken using a shadowgraph technique. INTRODUCTORY FLUID MECHANICS for Physicists and Mathematicians Geoffrey J. Pert Department of Physics, University of York, UK A John Wiley & Sons, Ltd., Publication Thiseditionfirstpublished2013 ©2013JohnWiley&SonsLtd. Registered office JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,United Kingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowto applyforpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteat www.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withtheCopyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthe priorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.All brandnamesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksor registeredtrademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproduct orvendormentionedinthisbook.Thispublicationisdesignedtoprovideaccurateand authoritativeinformationinregardtothesubjectmattercovered.Itissoldontheunderstanding thatthepublisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladviceorother expertassistanceisrequired,theservicesofacompetentprofessionalshouldbesought. Thepublisherandtheauthormakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithout limitationanyimpliedwarrantiesoffitnessforaparticularpurpose.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceand strategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofongoingresearch, equipmentmodifications,changesingovernmentalregulations,andtheconstantflowofinformation relatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreview andevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,piece ofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.Thefactthatanorganizationor Websiteisreferredtointhisworkasacitationand/orapotentialsourceoffurtherinformationdoes notmeanthattheauthororthepublisherendorsestheinformationtheorganizationorWebsite mayprovideorrecommendationsitmaymake.Further,readersshouldbeawarethatInternet Websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswritten andwhenitisread.Nowarrantymaybecreatedorextendedbyanypromotionalstatementsfor thiswork.Neitherthepublishernortheauthorshallbeliableforanydamagesarisingherefrom. Library of Congress Cataloging-in-Publication Data applied for. HardbackISBN:9781119944843 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Typesetin11/13.5ptComputerModernbyLaserwordsPrivateLimited,Chennai,India This book is dedicated with grateful thanks and appreciation to my doctoral supervisor John Pain who introduced me to the science of shock waves and fluid dynamics and who provided help and support in times of stress (even when we attacked the Tirpitz) Contents Preface xvii 1 Introduction 1 1.1 Fluids as a State of Matter . . . . . . . . . . . . . . . . . . . . 1 1.2 The Fundamental Equations for Flow of a Dissipationless Fluid 3 1.3 Lagrangian Frame . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . 6 1.3.2 Conservation of Momentum–Euler’s Equation . . . . . 7 1.3.3 Conservation of Angular Momentum . . . . . . . . . . 8 1.3.4 Conservation of Energy . . . . . . . . . . . . . . . . . . 8 1.3.5 Conservation of Entropy . . . . . . . . . . . . . . . . . 8 1.4 Eulerian Frame . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 Conservation of Mass–Equation of Continuity . . . . . 8 1.4.2 Conservation of Momentum . . . . . . . . . . . . . . . 9 1.4.3 Conservation of Angular Momentum . . . . . . . . . . 10 1.4.4 Conservation of Energy . . . . . . . . . . . . . . . . . . 11 1.4.5 Conservation of Entropy . . . . . . . . . . . . . . . . . 11 1.5 Hydrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.1 Isothermal Fluid–Thermal and Mechanical Equilibrium 12 1.5.2 Adiabatic Fluid–Lapse Rate . . . . . . . . . . . . . . . 12 1.5.3 Stability of an Equilibrium Configuration . . . . . . . . 15 1.6 Streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 Bernoulli’s Equation: Weak Form . . . . . . . . . . . . . . . . 16 1.8 Polytropic Gases . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.8.1 Applications of Bernoulli’s Theorem . . . . . . . . . . 19 1.8.1.1 Vena Contracta . . . . . . . . . . . . . . . . . 19 1.8.1.2 Flow of gas along a pipe of varying cross-section 20 Casestudy1.I Munroe Effect–Shaped Charge Explosive . . 22 2 Flow of Ideal Fluids 25 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Kelvin’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 26 vii viii Contents 2.2.1 Vorticity and Helmholtz’s Theorems . . . . . . . . . . 27 2.2.1.1 Simple or rectilinear vortex . . . . . . . . . . 29 2.2.1.2 Vortex sheet . . . . . . . . . . . . . . . . . . . 29 2.3 Irrotational Flow . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 Crocco’s Equation . . . . . . . . . . . . . . . . . . . . . 31 2.4 Irrotational Flow–Velocity Potential and the Strong Form of Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Incompressible Flow–Streamfunction . . . . . . . . . . . . . . 33 2.5.1 Planar Systems . . . . . . . . . . . . . . . . . . . . . . 33 2.5.2 Axisymmetric Flow–Stokes Streamfunction . . . . . . 34 2.6 Irrotational Incompressible Flow . . . . . . . . . . . . . . . . . 35 2.6.1 Simply and Multiply Connected Spaces . . . . . . . . . 37 2.7 Induced Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7.1 Streamlined Flow around a Body Treated as a Vortex Sheet . . . . . . . . . . . . . . . . . . . . . 41 2.8 Sources and Sinks . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.8.1 Doublet Sources . . . . . . . . . . . . . . . . . . . . . . 43 2.8.1.1 Doublet sheets . . . . . . . . . . . . . . . . . 45 2.8.2 Flow Around a Body Treated as a Source Sheet . . . . 45 2.8.3 Irrotational Incompressible Flow Around a Sphere . . . 48 Casestudy2.I Rankine Ovals . . . . . . . . . . . . . . . . . 49 2.9 Two-Dimensional Flow . . . . . . . . . . . . . . . . . . . . . . 51 2.9.1 Irrotational Incompressible Flow. . . . . . . . . . . . . 51 2.10 Applications of Analytic Functions in Fluid Mechanics . . . . 52 2.10.1 Flow from a Simple Source and a Simple Vortex . . . . 52 2.10.1.1 Free vortex . . . . . . . . . . . . . . . . . . . 53 2.10.1.2 Two-dimensional doublets and vortex loops . 55 2.10.2 Flow Around a Body Treated as a Sheet of Complex Sources and Doublets . . . . . . . . . . . . . . . . . . . 55 Casestudy2.II Application of Complex Function Analysis to the Flow around a Thin Wing . . . . . . . . . . . . . . 59 2.10.3 Flow Around a Cylinder with Zero Circulation . . . . . 62 2.10.4 Flow Around a Cylinder with Circulation . . . . . . . 64 2.10.5 The Flow Around a Corner . . . . . . . . . . . . . . . 66 2.11 Force on a Body in Steady Two-Dimensional Incompressible Ideal Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.12 Conformal Transforms . . . . . . . . . . . . . . . . . . . . . . 69 Appendix2.A Drag in Ideal Flow . . . . . . . . . . . . . . . . . . 70 2.A.1 Helmholtz’s Flow and Separation . . . . . . . . . . . . 71 2.A.2 Lines of Vortices . . . . . . . . . . . . . . . . . . . . . 72 2.A.2.1 Single infinite row of vortices . . . . . . . . . 72