ebook img

Introductory Econometrics PDF

637 Pages·2017·7.412 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introductory Econometrics

Phoebus Dhrymes Introductory Econometrics With Contributions by John Guerard Introductory Econometrics Phoebus Dhrymes Introductory Econometrics With Contributions by John Guerard PhoebusDhrymes(deceased) ISBN978-3-319-65914-5 ISBN978-3-319-65916-9 (eBook) DOI10.1007/978-3-319-65916-9 LibraryofCongressControlNumber:2017950078 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 TheGeneralLinearModelI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Generalities. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 1 1.2 ModelsandTheirUses. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 ModelSpecificationandEstimation. . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Notation,BasicConcepts,andAssumptions. . . . . . . . . . . . 3 2.2 TheGeneralLinearModelDefined. . . . . . . . . . . . . . . . . . 7 2.3 EstimationofParameters:Assumptions. . . . . . . . . . . . . . . 8 2.4 PropertiesoftheOLSEstimatorofβ. . . . . . . . . . . . . . . . . 10 2.5 Estimationofσ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 GoodnessofFit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 PropertiesoftheVectorofResiduals;the CoefficientofDeterminationofMultipleRegression. . . . . . 17 3.2 TheGLMWithoutaConstantTerm. . . . . . . . . . . . . . . . . . 23 Appendix:AGeometricInterpretationoftheGLM:TheMultiple CorrelationCoefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 TheGeometryoftheGLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 AMeasureofCorrelationBetweenaScalarandaVector. . . . . . . 32 2 TheGeneralLinearModelII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1 Generalities. . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 37 2 DistributionoftheEstimatorofβ. . . . . . . . . . . . . . . . . . . . . . . . . 38 2.1 EquivalenceofOLSandMLProcedures. . . . . . . . . . . . . . 38 2.2 DistributionoftheMLEstimatorofβ. . . . . . . . . . . . . . . . 40 2.3 DistributionofQuadraticForms inNormalVariables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 TestsofSignificanceintheGLM withNormalErrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5 FormalTestsofGoodnessofFit.. . . . . . .. . . . . . . .. . . . . 54 v vi Contents 3 GeneralLinearRestriction:EstimationandTests. . . . . . . . . . . . . 56 4 TheInformationContentinResidualsandOutliers?. . . . . . . . . . . 70 5 MixedEstimatorsandtheBayesianApproach. . . . . . . . . . . . . . . . 73 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 NoncentralChiSquare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 NoncentralF-Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 MultipleComparisonTests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 GeometricPreliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 MultipleComparisonTests—TheS-Method. . . . . . . . . . . . . . . . . 104 3 TheGeneralLinearModelIII. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 1 Generalities. . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 115 2 ViolationofStandardErrorProcessAssumptions. . . . . . . . . . . . . 116 2.1 NonzeroMean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 2.2 NonscalarCovarianceMatrix. . . . . . . . . . . . . . . . . . . . . . . 118 2.3 Heteroskedasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 2.4 AutocorrelatedErrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 2.5 TestsforFirst-OrderAutoregression: Durbin–WatsonTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2.6 SystemsofGLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Durbin–WatsonTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 GapsinData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 3 TablesforTestingHypothesesonthe AutoregressiveStructureoftheErrorsinaGLM. . . . . . . . . . . . . . 220 4 TheGeneralLinearModelIV. . . . . . .. . . . . . . .. . . . . . . .. . . . . . 229 1 Multicollinearity:FailureoftheRankCondition. . . . . . . . . . . . . . 230 1.1 DefinitionoftheProblem. . . . . . . . . . . . . . . . . . . . . . . . . . 230 1.2 RecognitionofMulticollinearity andProposedRemedies. . . . . . . . . . . . . . . . . . . . . . . . . . . 235 2 AnalysisofVariance:CategoricalExplanatoryVariables. . . . . . . . 255 3 AnalysisofCovariance:SomeCategorical andSomeContinuousExplanatoryVariables. . . . . . . . . . . . . . . . 265 4 CaseStudyofReturns,Risk,PortfolioSelection andEvaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 4.1 ExpectedReturnsModelingandStockSelection Models:RecentEvidence.. . . . . . . . .. . . . . . . . . .. . . . . . 268 4.2 EvaluationofPortfolioPerformance:Origins. . . . . . . . . . . 283 4.3 PortfolioSimulationResultswiththeUSER andGLERModelsandaUSERModelUpdate. . . . . . . . . . 285 5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Appendix:ModernRegressionAnalysis,theCase ofLeastAngleRegression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Contents vii 5 MisspecificationAnalysisandErrorsinVariables. . . . . . . . . . . . . 293 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 2 MisspecificationAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 2.1 GeneralTheoryintheContextoftheGLM. . . . . . . . . . . . . 296 2.2 ProxyVariablesandTheirUse. . . . . . . . . . . . . . . . . . . . . . 305 2.3 NearCollinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 3 ErrorsinVariables(EIV):BivariateModel. . . . . . . . . . . . . . . . . . 321 3.1 InconsistencyoftheOLSEstimator. . . . . . . . . . . . . . . . . . 321 3.2 WaldandMLEstimators. . . . . . . . . . . . . . . . . . . . . . . . . . 325 4 ErrorsinVariables(EIV):GeneralModel. . . . . . . . . . . . . . . . . . . 331 4.1 DerivationoftheEstimator. . . . . . . . . . . . . . . . . . . . . . . . 331 4.2 AsymptoticProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 5 MisspecificationErrorAnalysisforEIVModels. . . . . . . . . . . . . . 343 5.1 TheGeneralCase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 6 SystemsofSimultaneousEquations. . . . . . . . . . . . . . . . . . . . . . . . 353 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 2 TheSimultaneousEquationsModel(SEM):Definitions, Conventions,andNotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 2.1 TheNatureoftheProblem. . . . . . . . . . . . . . . . . . . . . . . . . 354 2.2 DefinitionofGLSEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 2.3 BasicConditionsUnderWhichtheGLSEM IsEstimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 3 TheIdentificationProblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 4 EstimationoftheGLSEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 4.1 FailureofOLSMethods. . . . . . . . . . . . . . . . . . . . . . . . . . 373 4.2 TwoStageLeastSquares(2SLS). . . . . . . . . . . . . . . . . . . . 376 4.3 ThreeStageLeastSquares(3SLS). . . . . . . . . . . . . . . . . . . 380 4.4 AsymptoticPropertiesof2SLSand3SLS. . . . . . . . . . . . . . 383 5 PredictionfromtheGLSEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 6 TheGLSEMandUndersizedSamples. . . . . . . . . . . . . . . . . . . . . 401 7 MaximumLikelihood(ML)Estimators. . . . . .. . . . .. . . . . .. . . . 406 7 TimeSeriesModeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 1 BasicStatisticalPropertiesofEconomicSeries. . . . . . . . . . . . . . . 416 1.1 StationarityofEconomicSeries. . . . . . . . . . . . . . . . . . . . . 417 2 ARMAModelIdentificationinPractice. . . . . . . . . . . . . . . . . . . . 426 3 TimeSeriesModelingofRealGDPAnalysis, 1947–2015Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 4 AutomaticTimeSeriesModelSelection. . . . . . . . . . . . . . . . . . . . 436 5 TransferFunctionsusingLeadingEconomic Indicators(LEI)toForecastRealGDPAnalysis, 1959-2015Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 6 TestingforCausality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 Appendix:AdvancedTimeSeriesModeling. . . . . . . . . . . . . . . . . . . . 473 viii Contents 8 Forecasting:AccuracyandEvaluation. . . . . . . . . . . . . . . . . . . . . . 477 1 MeasuringForecastAccuracyandEstablishing Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 2 ForecastRationality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 2.1 AbsoluteandRelativeForecastAccuracy. . . . . . . . . . . . . 486 3 AnEqually-WeightedForecast. . . . . . . . . . . . . . . . . . . . . . . . . . 488 4 GNPForecasts:IsEqual-WeightingofForecasts OptimalandCanTimeSeriesModelsBeatExperts?. . . . . . . . . . 493 5 LeadingEconomicIndicators(LEI)andReal GDPAnalysis:ReviewingtheStatisticalEvidence, 1970–2002,andanUpdate,2003–6/2016. . . . . . . . . . . . . . . . . . 497 6 ForecastingUnemployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 7 Forecasts,ForecastRevisions,andtheApplicability ofAnalystsForecastsinFinancialMarkets. . . . . . . . . . . . . . . . . 502 8 ForecastingRecessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 AppendixA:ExponentialSmoothing. . . . . . . . . . . . . . . . . . . . . . . . . 514 AppendixB:TheThetaModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 AppendixC:AutomaticModelingoftheUnemploymentRate. . . . . . 519 9 DiscreteChoiceModels:LogitandProbitAnalysis. . . . . . . . . . . . 527 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 2 TheNatureofDiscreteChoiceModels. . . . . . . . . . . . . . . . . . . . . 528 3 FormulationofDichotomousChoiceModels. . . . . . . . . . . . . . . . 529 4 ABehavioralJustificationfortheDichotomous ChoiceModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 5 InapplicabilityofOLSProcedures. . . . . . . . . . . . . . . . . . . . . . . . 535 6 MaximumLikelihoodEstimation. . . . . . . . . . . . . . . . . . . . . . . . . 538 7 InferenceforDiscreteChoiceModels. . . . . . . . . . . . . . . . . . . . . . 540 8 PolytomousChoiceModels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 8.1 GeneralDiscussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 8.2 Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 ARandomChoiceMotivationfortheLogisticModel. . . . . . . . . . 545 ConvexityoftheLikelihoodFunction. . .. . . . . . .. . . . . . .. . . . . 550 ConvexityoftheLikelihoodFunction inthePolytomousLogisticCase. . . . . . . . . . . . . . . . . . . . . . . . . 554 10 StatisticalandProbabilisticBackground. . . . . . . . . . . . . . . . . . . . 561 1 MultivariateDensityandDistributionFunctions. . . . . . . . . . . . . . 561 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 1.2 MultivariateDistributions. . . . . . . . . . . . . . . . . . . . . . . . . . 561 1.3 ExpectationandCovarianceOperators. . . . . . . . . . . . . . . . . 564 1.4 AMathematicalDigression. . . . . . . . . . . . . . . . . . . . . . . . . 568 Contents ix 2 TheMultivariateNormalDistribution. . . . . . . . . . . . . . . . . . . . . . 570 2.1 Joint,Marginal,andConditionalDensity Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570 2.2 TheMomentGeneratingFunction. . . . . . . . . . . . . . . . . . . . 579 3 PointEstimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 4 ElementsofBayesianInference. . . . . . . . . . . . . . . . . . . . . . . . . . 598 4.1 PriorandPosteriorDistributions. . . . . . . . . . . . . . . . . . . . . 598 4.2 InferenceinaBayesianContext. . . . . . . . . . . . . . . . . . . . . . 605 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 A Tribute to Phoebus J. Dhrymes (1932–2016) ArisSpanos,VirginiaTech,June2017 PhoebusJamesDhrymes wasborninKtima (Cyprus) on October 1, 1932, and died on April 8, 2016, in New York. His surname derives from the place of his ancestry, “Dhrymou” (nowadays spelled “Drimou”), a small village in the Paphos district, only a few miles fromKtima. His life journey from the humble beginnings of a village boy to the Edwin W. Rickert Professor of Eco- nomics at Columbia University is an amazing story of diligenceandperseverance,sprinkledwithseeminglyinadvertentdecisions,suchas hisvolunteeringtobedraftedintotheUSArmyin1952,butalwaysdrivenbythe single-mindedness to succeed, and guided by the most honorable virtues of his Greek heritage: fairness (δικαιoσύνη), temperance (σωφρoσύνη), fortitude (ανδρεία), and wisdom (φρo´νηση): virtues that fostered an unquenched thirst for knowledge,passionforteaching,andalife-timedevotiontohisfamily. Education TherewasnothinginadvertentaboutanyofPhoebus’schoicesduring hislife,includinghisvolunteeringtobedraftedintheUSarmy,onlyafewmonths afterarrivingintheUSA.Havingnosourceofmoneywashisonlyreasonablepath to a university education, thanks to the GI bill (The Servicemen’s Readjustment Actof1944)!Indeed,tobeabletotakefulladvantageoftheGIbill’sallowanceof $110 for 36 months after his two years of military service, he enrolled at the Universityof Texas at Austinin 1954and completed his undergraduate degreein Economics within 30 months by 1957. He could not afford to go to Berkeley or NYC,eventhoughhehadoffers,becausehismonthlyallowance wouldnotcover hislivingexpenses. BasedonhisoutstandingperformanceasanundergraduateattheUniversityof Texas(Austin),hemanagedtosecureaWoodrowWilsonFellowshiptostudyfor xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.