ebook img

Introductory Analysis-An Inquiry Approach PDF

251 Pages·2020·6.806 MB·\251
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introductory Analysis-An Inquiry Approach

Introductory Analysis Introductory Analysis An Inquiry Approach John D. Ross Southwestern University Kendall C. Richards Southwestern University Coverimagecredit: WilliamLester Old Fort Davis,1949 Oiloncompositionboard Canvasdimensions:24×341/8in.(60.96×86.68cm) DallasMuseumofArt,DallasArtAssociationPurchase1951.64 ImagecourtesyDallasMuseumofArt.Permissiontouseaphotographicimageofthepaint- ing was generously granted by the artist’s children, Edith A. Lester Kimbrough and Paul D.Lester. CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2020byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-0-815-37144-1(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea- sonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen- ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not- for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade- marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe. Library of Congress Cataloging-in-Publication Data LCCN2019051900 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface ix Prerequisites 1 P1Exploring Mathematical Statements 3 P1.1 What is a mathematical statement? . . . . . . . . . . . . . . 3 P1.2 Basic set theory . . . . . . . . . . . . . . . . . . . . . . . . . 5 P1.3 Quantifiers, both existential and universal . . . . . . . . . . . 10 P1.4 Implication: the heart of a “provable” mathematical statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 P1.5 Negations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 P1.6 Statements related to implication . . . . . . . . . . . . . . . 17 P2 Proving Mathematical Statements 21 P2.1 Using definitions . . . . . . . . . . . . . . . . . . . . . . . . . 21 P2.2 Proving a basic statement with an existential quantifier . . . 22 P2.3 Proving a basic statement with a universal quantifier . . . . 23 P2.4 Proving an implication directly . . . . . . . . . . . . . . . . . 24 P2.5 Proof by contrapositive . . . . . . . . . . . . . . . . . . . . . 26 P2.6 Proof involving cases . . . . . . . . . . . . . . . . . . . . . . 27 P2.7 Proof by contradiction . . . . . . . . . . . . . . . . . . . . . 28 P2.8 Proof by induction . . . . . . . . . . . . . . . . . . . . . . . . 29 P2.9 Proving that one of two (or one of several) conclusions is true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 P3 Preliminary Content 35 P3.1 Relations and equivalence . . . . . . . . . . . . . . . . . . . . 35 P3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 P3.3 Inequalities and epsilons . . . . . . . . . . . . . . . . . . . . 41 v vi Contents Main Content 43 1 Properties of R 45 1.1 Preliminary work . . . . . . . . . . . . . . . . . . . . . . . . 46 1.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.3 Follow-up work . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2 Accumulation Points and Closed Sets 59 2.1 Preliminary work . . . . . . . . . . . . . . . . . . . . . . . . 59 2.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3 Follow-up work . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3 Open Sets and Open Covers 65 3.1 Preliminary work . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3 Follow-up work . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 Sequences and Convergence 71 4.1 Preliminary work . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3 Follow-up work . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 Subsequences and Cauchy Sequences 83 5.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 Functions, Limits, and Continuity 93 6.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 94 6.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 98 7 Connected Sets and the Intermediate Value Theorem 101 7.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 101 7.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 104 Contents vii 8 Compact Sets 109 8.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 109 8.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 112 8.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 113 9 Uniform Continuity 115 9.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 115 9.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 118 10 Introduction to the Derivative 119 10.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 119 10.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 123 11 The Extreme and Mean Value Theorems 125 11.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 125 11.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 126 11.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 128 12 The Definite Integral: Part I 133 12.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 134 12.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 138 12.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 139 13 The Definite Integral: Part II 143 13.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 143 13.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 145 13.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 148 14 The Fundamental Theorem(s) of Calculus 151 14.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 151 14.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 152 14.3 Follow-up Work . . . . . . . . . . . . . . . . . . . . . . . . . 156 15 Series 159 15.1 Preliminary work . . . . . . . . . . . . . . . . . . . . . . . . 160 15.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 162 15.3 Follow-up work . . . . . . . . . . . . . . . . . . . . . . . . . . 170 viii Contents Extended Explorations 175 E1Function Approximation 177 E1.1 Taylor Polynomials and Taylor’s Theorem . . . . . . . . . . 177 E1.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 E1.3 Divided Differences . . . . . . . . . . . . . . . . . . . . . . . 184 E1.4 A Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . 185 E2Power Series 187 E2.1 Introduction to Power Series . . . . . . . . . . . . . . . . . . 187 E2.2 Differentiation of a Power Series . . . . . . . . . . . . . . . . 188 E2.3 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 E3Sequences and Series of Functions 199 E3.1 Pointwise Convergence . . . . . . . . . . . . . . . . . . . . . 199 E3.2 Uniform Convergence and Uniformly Cauchy Sequences of Functions . . . . . . . . . . . . . . . . . . . . . 200 E3.3 Consequences of Uniform Convergence . . . . . . . . . . . . 202 E4Metric Spaces 207 E4.1 What is a Metric Space? Examples . . . . . . . . . . . . . . 207 E4.2 Metric Space Completeness . . . . . . . . . . . . . . . . . . . 210 E4.3 Metric Space Compactness . . . . . . . . . . . . . . . . . . . 213 E5Iterated Functions and Fixed Point Theorems 219 E5.1 Iterative Maps and Fixed Points . . . . . . . . . . . . . . . . 219 E5.2 Contraction Mappings . . . . . . . . . . . . . . . . . . . . . . 223 E5.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . 225 Appendix 229 A Brief Summary of Ordered Field Properties 231 Bibliography 233 Index 235 Preface In recent years there have been mounting calls to transform the mathematics classroom into an active and engaging space. The Common Vision project, which synthesizes and promotes evidence-based teaching practices across the majormathematicalassociationsintheUnitedStates,stressestheimportance of math classes “moving toward environments that incorporate multiple ped- agogical approaches” such as “active learning models where students engage inactivitiessuchasreading,writing,discussion,orproblemsolving”[1].This text aims to offer a self-contained introduction to undergraduate elementary real analysis in a manner that promotes active learning. Undergraduate real analysis exposes students to most of the large ideas present in Calculus, but at a much higher level of rigor than in a traditional Calculus classes. Perhaps more importantly, students are also introduced to a host of logical reasoning skills and proof-writing techniques. Gaining this bodyofknowledgeservesasanimportantmilestoneinthemathematicsmajor and can act as a launchpad to future math classes. However, to achieve its full potential, an undergraduate analysis class must (a) cover a broad range of material, and (b) offer suitable opportunities for the student to practice and develop their skills of proof-writing and proof-analyzing. These two goals oftenexistintensionwitheachother,asthereisonlyafinite(indeed,ashort) amount of time to accomplish both. Our intent in writing this text has been to find a “sweet spot” between pure Inquiry-Based Learning and more traditional approaches. The primary aim of this text is to provide a self-contained introduction to elementary real analysisusinganinquiry-orientedapproachwithscaffolding.Thepresentation is intended to be “inquiry-oriented” in the sense that, as each major topic is discussed, details of the proofs are left to the student. However, we do include scaffolding for most of the theorems. Our scaffolding takes the form of brief guiding prompts marked as Key Steps in a Proof. Students are asked to follow these guidelines and work toward a prompted, but largely self-generated, proof of each theorem. The symbol (cid:32) is included when we want to particularly emphasize that there is work that must be done by the student in order to complete the specific stage of the argument. We close the scaffolding discussion with the symbol (cid:13) and restrict the use of the symbol (cid:3) to only those cases where a complete proof is provided. Although the mathematics covered here is not new (almost all of it has been known for hundreds of years), it is hoped that the text is framed in ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.