Introduction to Wet Sulfuric Acid Plants Optimization Through Exergoeconomics Master’s thesis Borja Xicoy Almirall Professor: Prof. Dr.-Ing. Günter Wozny Tutor: Dipl.-Ing. Jan Schöneberger June 2009 Kurzfassung Die Diplomarbeit ist eine Einleitung zur thermoökonomische Analyse in Schwe- felsäure Anlagen. Eine Referenzanlage mit der folgenden charakteristiken wird analysiert: eineSchwefelbrennkammerzurOxidationschwefelwasserstoffhaltigerGase, eindurchLuftzufuhrabgekühlterNaß-KatalyseProzessundeineAbsorptionskolonne zur Produzierung von Schwefelsäure mit 78 Massenprozent H SO . Außerdem wird 2 4 Wasserdampf von 40 bar und 5 bar erzeugt. Die thermoökonomische Analyse besteht aus drei Schritten: Zuerst wird eine Ex- ergieanalyseunterAnwendungderkommerziellenSoftwareCHEMCADunddesHil- fsprogramms CHEMEX durchgeführt. CHEMEX wurde im Rahmen dieser Diplo- marbeit entwickelt und dient zur Berechnung der chemischen Exergie von Elek- trolytlösungen. Im nächsten Schritt wird eine Wirtschaftlichkeitsanalyse zur der Berechnung der nivellierten Kosten der Anlage mittels PEC und weiteren Kosten- schätzungsmethoden durchgeführt. Im dritten Schritt der Analyse werden Exergie- und Wirtschaftlichkeitsanalyse durch die Aufteilung der nivellierten Kosten auf alle Strömen der gesamten Anlage bezüglich ihrer Exergiewerte kombiniert. Dafür ist ein lineares Gleichungssystem mit den Kostbilanzen jeweiliger Analgenkomponente und komponentenspezifischen Hilfsgleichungen zu lösen. Schließlich werden drei kosteneffektive Optimierungsschritte auf die Referenzanlage angewendet, wobei ex- ergoökonomische Kennzahlen die jeweiligen Optimierungsschritte motivieren. i Abstract This thesis pretends to be an introduction to the use of thermoeconomics in sulfuric acid plants. A reference plant with the followings features is examined: a sulfur burner which oxidizes hydrogen sulfide gases, a wet-catalysis process which is cooled by means of air quenching, and an absorbtion column that produces sulfuric acid of 78 wt.%. Moreover, the plant has two heat-recovery boilers that produce steam at 40bar and 5bar. The thermoeconomic evaluation consists of three steps: In the first step, an exergy analysis is performed by using the commercial software CHEMCAD and the tool CHEMEX, which was designed for this work and takes into account the activity coefficients of water and sulfuric acid in liquid mixtures for the calculation of the chemical exergies; In the second step, an economic evaluation is carried out in order to calculate the plant levelized costs by means of the PEC and cost estimating techniques; In the third step, both exergy and economic analyses are combined by distributing the levelized costs among all plant streams, regarding to its exergy value, in terms of a linear equation system composed of the cost equation of each plant component and some auxiliary equations. Finally, three possible cost-effective optimizations are studied regarding to the reference plant by applying the methods of the thermoeconomic optimization based on thermoeconomic key indicators. ii Contents Kurzfassung i Abstract ii Contents iii List of Tables vi List of Figures xi List of Acronyms xiv Nomenclature and Units xvi 1 Introduction 1 1.1 The Process and its Development . . . . . . . . . . . . . . . . . . . . 2 1.2 An Introduction to Contact Processes . . . . . . . . . . . . . . . . . . 4 1.2.1 Catalytic Oxidation of Sulfur Dioxide . . . . . . . . . . . . . . 4 1.2.2 Absorption of Sulfur Trioxide . . . . . . . . . . . . . . . . . . 6 1.2.3 Constructive Elements . . . . . . . . . . . . . . . . . . . . . . 7 2 Case Study Process 18 2.1 An Introduction to Wet-Catalysis Processes . . . . . . . . . . . . . . 18 2.2 Reference on Considered Process . . . . . . . . . . . . . . . . . . . . 20 3 Exergy Analysis 29 3.1 The Exergy Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 Environment and Dead States . . . . . . . . . . . . . . . . . . 32 3.2 The Exergy Components . . . . . . . . . . . . . . . . . . . . . . . . . 33 iii CONTENTS Sulfuric acid plant optimization 3.2.1 Physical Exergy . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.2 Chemical Exergy . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Exergy Rate Balance for Control Volumes at Steady State . . . . . . 39 3.4 Exergy Destruction and Loss . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 Exergy ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5.1 Exergetic efficiency . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5.2 Exergy Destruction and Exergy Loss Ratios . . . . . . . . . . 45 4 Economic Analysis 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Estimation of the Total Capital Investment . . . . . . . . . . . . . . . 52 4.2.1 Purchased-equipment costs . . . . . . . . . . . . . . . . . . . . 54 4.2.2 Direct Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.3 Indirect Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.4 Other Outlays . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Calculation of the Total Revenue Requirement . . . . . . . . . . . . . 70 4.4 Levelized costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Thermoeconomic Analysis 82 5.1 Fundamentals of thermoeconomics . . . . . . . . . . . . . . . . . . . . 83 5.1.1 Costing of Exergy Loss Streams . . . . . . . . . . . . . . . . . 86 5.1.2 Exergy Costing for the Considered Process Components . . . 87 5.2 Thermoeconomic analysis of the Considered Process . . . . . . . . . . 92 5.3 Thermoeconomic Variables . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.1 Average Unit Cost of Fuel and Product . . . . . . . . . . . . . 103 5.3.2 Cost Rate of Exergy Destruction . . . . . . . . . . . . . . . . 103 5.3.3 Exergoeconomic Factor . . . . . . . . . . . . . . . . . . . . . . 108 5.4 Thermoeconomic Evaluation . . . . . . . . . . . . . . . . . . . . . . . 109 5.4.1 Reference Case Evaluation . . . . . . . . . . . . . . . . . . . . 110 6 Thermoeconomic Optimization 113 6.1 Decision Variables and System Constrains . . . . . . . . . . . . . . . 114 6.2 Possible Plant Optimizations . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.1 Improvement I . . . . . . . . . . . . . . . . . . . . . . . . . . 118 iv CONTENTS Sulfuric acid plant optimization 6.2.2 Improvement II . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.3 Improvement III . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3 Optimization Summary and Conclusions . . . . . . . . . . . . . . . . 127 7 Conclusions 132 Bibliography 140 Appendices 144 A 144 A.1 Interests During Plant Operation (ROI) . . . . . . . . . . . . . . . . 145 A.1.1 Favorable Case . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.1.2 Unfavorable Case . . . . . . . . . . . . . . . . . . . . . . . . . 146 A.2 Total Required Revenue (TCR) . . . . . . . . . . . . . . . . . . . . . 147 A.2.1 Favorable Case . . . . . . . . . . . . . . . . . . . . . . . . . . 147 A.2.2 Unfavorable Case . . . . . . . . . . . . . . . . . . . . . . . . . 148 B 149 C 164 C.1 AD_12_FOR.FOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.2 EXTERNALENTROPIE.FOR . . . . . . . . . . . . . . . . . . . . . . 168 C.3 EXTERNALCHEMEXERGIE.FOR . . . . . . . . . . . . . . . . . . . 168 C.4 ECH_TAB2FOR.FOR . . . . . . . . . . . . . . . . . . . . . . . . . . 170 C.5 COEF_ACTIV.FOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 C.6 COEF_ACTIV.FOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 v List of Tables 2.1 Surrounding conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Parameter temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Process table: main stream; 1Hydrogen cyanide molar composition = 0.21; 2see Eq. 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Process table: atmospheric air and water; 1see Eq. 2.2; 2see Eq. 2.3; 3see Eq. 2.4; 4see Eq. 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Activity coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Exergy table: main stream . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Exergy table: atmospheric air and water . . . . . . . . . . . . . . . . 48 3.4 Exergy destruction table for all acid plant components, calculated by the entropy generation and by the exergy balance methods . . . . . . 49 3.5 Work rates of the compressor and the pumps . . . . . . . . . . . . . . 49 3.6 Exergy destruction rates for all acid plant components in order de- creasingly, calculated by the entropy generation method. . . . . . . . 50 4.1 Contact group, size and mass specifications . . . . . . . . . . . . . . . 58 4.2 Purchase Equipment Costs (PEC) (rounded values) . . . . . . . . . . 60 4.3 Economic and plant parameters . . . . . . . . . . . . . . . . . . . . . 64 4.4 Annual operating and maintenance costs . . . . . . . . . . . . . . . . 65 4.5 Working capital and associated costs . . . . . . . . . . . . . . . . . . 66 4.6 Plan financing fractions and required returns on capital . . . . . . . . 67 4.7 Release dates for plant expenses [5] . . . . . . . . . . . . . . . . . . . 67 4.8 Calculation of AFUDC (end-2011 values) (all values are rounded and given in thousands of euros) . . . . . . . . . . . . . . . . . . . . . . . 69 vi LIST OF TABLES Sulfuric acid plant optimization 4.9 Total capital investment and related costs I (all costs are rounded and expressed in thousands of escalated euros) . . . . . . . . . . . . . 71 4.10 Total capital investment and related costs II (all costs are rounded and expressed in thousands of mid-2008 euros) . . . . . . . . . . . . . 72 4.11 Year-by-year distribution of capital recovery and interests generated during plant operation (ROI) (all costs are rounded and expressed in thousands of escalated euros) . . . . . . . . . . . . . . . . . . . . . . 75 4.12 Year-by-year revenue requirement analysis for the medium case (all costs are rounded and expressed in thousands of mid-2008 euros). The terms TRR and TRR correspond with the escalated values cu ct and the values brought to the middle of the year 2011 of the total revenue requirement, respectively. . . . . . . . . . . . . . . . . . . . . 76 5.1 Z˙ −costs associated to the plant components; except to pumps, mix- ers, and splitters, which its purchase costs are neglected. The pur- chased costs are expressed in rounded mid-2008 euros. . . . . . . . . . 84 5.2 Thermoeconomic results for the reference plant: main stream (Inter- mediate case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3 Thermoeconomic results for the reference plant: atmospheric air and water (Intermediate case) . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4 Costs associated with compressor and pumps power for the reference plant (Intermediate case) . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.5 Product prices in cents of euro per kilogram of both thermoeconomic and economic analysis for the reference plant. The differences in H SO prices are due to fact that the steam prices are different in 2 4 both analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.6 Rounded average costs per unit of exergy of the plant products cal- culated through an economic and a thermoeconomic analysis for the reference plant (Intermediate case). The terms c and c correspond E m to the specific costs per exergy and mass, respectively. . . . . . . . . . 104 5.7 Definition and average costs of the fuel and product from all system components for the reference plant (Intermediate case) . . . . . . . . 105 vii LIST OF TABLES Sulfuric acid plant optimization 5.8 Thermoeconomic variables from the reference plant in order decreas- ingly, accordingly to the sum Z˙ +C˙ (Intermediate case) . . . . . . . 111 D 6.1 Decision variables of the sulfuric acid plant in the initial case with its constrains and ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 Thermoeconomic variables decreasingly ordered according to the sum Z˙ +C˙ for the Improvement I (Intermediate case) . . . . . . . . . . . 122 D 6.3 Product prices in cents of euro per kilogram of both thermoeconomic and economic analysis for the Improvement I . . . . . . . . . . . . . . 123 6.4 Thermoeconomic variables from the reference case decreasingly or- dered, accordingly to the sum Z˙ +C˙ for the Improvement II (Inter- D mediate case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.5 Thermoeconomic variables from the reference plant decreasingly or- dered, accordingly to the sum Z˙ +C˙ for the Improvement III (In- D termediate case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.6 Decision variables and purchase costs of the first and second heat exchanger for the reference plant and possible improvements (Inter- mediate cases); 1In the Improvement II, T , T , and m correspond 9 15 13 with T , T , and m , respectively . . . . . . . . . . . . . . . . . . . 129 8 14 12 6.7 Results for the reference case and possible improvements: levelized total required revenue, TRR ; reduction of the TRR regarding to L L the reference plant; plant exergetic efficiency; and annual exergy from the total generated steam (Intermediate cases) . . . . . . . . . . . . . 129 6.8 Comparison between both thermoeconomic and economic analysis for thereferencecaseandpossibleimprovementsthroughthepercentages of the revenue obtained by the sale of sulfuric acid and steam regard- ing to the total required revenue (TRR ), as well as the specific cost L of the sulfuric acid from both thermoeconomic and economic analysis (Intermediate cases) . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 A.1 Year-by-year distribution of capital recovery and interests generated during plant operation (ROI) for the favorable case (all costs are rounded and expressed in thousands of escalated euros) . . . . . . . . 145 viii LIST OF TABLES Sulfuric acid plant optimization A.2 Year-by-year distribution of capital recovery and interests generated during plant operation (ROI) for the unfavorable case (all costs are rounded and expressed in thousands of escalated euros) . . . . . . . . 146 A.3 Year-by-year revenue requirement analyisis for the favorable case (all costs are rounded and expressed in thousands of escalated euros) . . . 147 A.4 Year-by-year revenue requirement analyisis for the unfavorable case (all costs are rounded and expressed in thousands of escalated euros) 148 B.1 Thermoeconomic results for the Improvement I: main stream (Inter- mediate case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2 Thermoeconomic results for the Improvement I: atmospheric air and water (Intermediate case) . . . . . . . . . . . . . . . . . . . . . . . . 154 B.3 Thermoeconomic results for the Improvement II: main stream (Inter- mediate case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.4 Thermoeconomic results for the Improvement II: atmospheric air and water (Intermediate case) . . . . . . . . . . . . . . . . . . . . . . . . 156 B.5 Thermoeconomic results for the Improvement III: main stream (In- termediate case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 B.6 ThermoeconomicresultsfortheImprovementIII:atmosphericairand water (Intermediate case) . . . . . . . . . . . . . . . . . . . . . . . . 158 B.7 Costs associated with compressor and pumps power for the Improve- ment I (Intermediate case) . . . . . . . . . . . . . . . . . . . . . . . . 159 B.8 Costs associated with compressor and pumps power for the Improve- ment II (Intermediate case) . . . . . . . . . . . . . . . . . . . . . . . 159 B.9 Costs associated with compressor and pumps power for the Improve- ment III (Intermediate case) . . . . . . . . . . . . . . . . . . . . . . . 159 B.10 Rounded average costs per unit of exergy of the plant products cal- culated through an economic and a thermoeconomic analysis for the Improvement I (Intermediate case) . . . . . . . . . . . . . . . . . . . 160 B.11 Rounded average costs per unit of exergy of the plant products cal- culated through an economic and a thermoeconomic analysis for the Improvement II (Intermediate case) . . . . . . . . . . . . . . . . . . . 161 ix
Description: