ebook img

Introduction to Topological Quantum Computation PDF

225 Pages·2012·2.783 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Topological Quantum Computation

IntroductiontoTopologicalQuantumComputation Combiningphysics,mathematicsandcomputerscience,topologicalquantumcomputation isarapidlyexpandingresearchareafocusedontheexplorationofquantumevolutionsthat areimmunetoerrors.Inthisbook,theauthorpresentsavarietyofdifferenttopicsdevel- opedtogetherforthefirsttime,forminganexcellentintroductiontotopologicalquantum computation. Themakingsoftopologicalsystems,theirpropertiesandtheircomputationalpowerare presented in a pedagogical way. Relevant calculations are fully explained, and numerous workedexamplesandexercisessupportandaidunderstanding.Specialemphasisisgiven tothemotivationandphysicalintuitionbehindeverymathematicalconcept. Demystifyingdifficulttopicsbyusingaccessiblelanguage,thisbookhasbroadappeal andisidealforgraduatestudentsandresearchersfromvariousdisciplineswhowanttoget intothisnewandexcitingresearchfield. JiannisK.Pachos is a Reader in the School of Physics and Astronomy at the University of Leeds,UK.Heworksonavarietyofresearchtopics,rangingfromquantumfieldtheoryto quantumoptics.DrPachosisaUniversityResearchFellowoftheRoyalSociety. os at el g n a Ev as ost C (cid:2)c Introduction to Topological Quantum Computation JIANNIS K. PACHOS UniversityofLeeds,UK CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107005044 (cid:2)c J.K.Pachos2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-00504-4Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. ToAlmutandSevi Contents Acknowledgements pagexi PartI Preliminaries 1 1 Introduction 3 1.1 Particleexchangeandquantumphysics 3 1.2 Anyonsandtopologicalsystems 4 1.3 Quantumcomputationwithanyons 5 1.4 Abelianandnon-Abeliananyonicstatistics 6 1.5 Whatareanyonicsystems? 8 1.5.1 Two-dimensionalwavefunctionsandquasiparticles 8 1.5.2 Symmetry,degeneracyandquantumcorrelations 10 Summary 11 Exercises 12 2 Geometricandtopologicalphases 13 2.1 Quantumphasesfromgaugefields 14 2.1.1 Chargedparticleinamagneticfield 14 2.1.2 TheAharonov–Bohmeffect 15 2.1.3 AnyonsandAharonov–Bohmeffect 16 2.2 Geometricphasesandholonomies 17 2.2.1 Spin-1/2particleinamagneticfield 18 2.2.2 Non-Abeliangeometricphases 21 2.2.3 Propertiesofgeometricevolutions 23 2.2.4 Anyonsandgeometricphases 26 2.3 ExampleI:IntegerquantumHalleffect 27 2.3.1 Wavefunctionofachargedparticleinamagneticfield 27 2.3.2 CurrentbehaviourandHallconductivity 29 2.3.3 Laughlin’sthoughtexperimentandgeometricphases 32 Summary 36 Exercises 36 3 Quantumcomputation 38 3.1 Qubitsandtheirmanipulations 39 3.1.1 Quantumbits 39 viii Contents (cid:2) 3.1.2 Decoherenceandmixedstates 40 3.1.3 Quantumgatesandprojectors 41 3.2 Quantumcircuitmodel 43 3.2.1 Quantumalgorithmanduniversality 44 3.2.2 Computationalcomplexity 45 3.3 Othercomputationalmodels 46 3.3.1 One-wayquantumcomputation 47 3.3.2 Adiabaticquantumcomputation 49 3.3.3 Holonomicquantumcomputation 51 Summary 53 Exercises 53 4 Computationalpowerofanyons 55 4.1 Anyonsandtheirproperties 56 4.1.1 Particletypes 56 4.1.2 Fusionrulesofanyons 57 4.1.3 AnyonicHilbertspace 58 4.1.4 Exchangepropertiesofanyons 61 4.1.5 Pentagonandhexagonidentities 62 4.1.6 Spinandstatistics 64 4.2 Anyonicquantumcomputation 65 4.2.1 Anyonicsetting 66 4.2.2 Stabilityofanyoniccomputation 67 4.3 ExampleI:Isinganyons 68 4.3.1 Themodelanditsproperties 68 4.3.2 FandRmatrices 70 4.4 ExampleII:Fibonaccianyons 73 Summary 75 Exercises 75 PartII Topologicalmodels 77 5 Quantumdoublemodels 79 5.1 Errorcorrection 80 5.1.1 Quantumerrorcorrectingcodes 80 5.1.2 Stabilisercodes 81 5.2 Quantumdoublemodels 83 5.2.1 Thetoriccode 83 5.2.2 GeneralD(G)quantumdoublemodels 91 5.3 ExampleI:Abelianquantumdoublemodels 94 5.4 ExampleII:Thenon-AbelianD(S )model 96 3 5.5 Quantumdoublesasquantummemories 98 5.5.1 Non-Abelianinformationencodingandmanipulation 98

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.