INTRODUCTION TO SYMMETRY AND GROUP THEORY FOR CHEMISTS This page intentionally left blank Introduction to Symmetry and Group Theory for Chemists by Arthur M. Lesk KLUWER ACADEMIC PUBLISHERS NEW YORK,BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 1-4020-2151-8 Print ISBN: 1-4020-2150-X ©2004 Springer Science + Business Media, Inc. Print ©2004 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans,electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com and the Springer Global Website Online at: http://www.springeronline.com Contents Preface ix 1. THE RELATIONSHIP BETWEEN GROUP THEORY AND CHEMISTRY 1 1.1 Introduction 1 1.2 Applicationsofgrouptheory 1 2. SYMMETRY 3 2.1 Abridgefromgeometrytoarithmetic 3 2.2 Classifyingsymmetryoperations 3 2.3 Fullanalysisofthesymmetryofthewatermolecule:Introduction tonotation 4 2.4 Productsofcoveringoperations: multiplicationtables 8 2.5 Whatisagroup? 8 3. GROUPTHEORY 11 3.1 Definitionofagroup 11 3.2 Subgroups 12 3.3 Examplesofgroups 13 4. POINTGROUPS–THESYMMETRYGROUPSOFSMALL MOLECULES 15 4.1 Introduction 15 4.2 Axesofrotation: C 15 n 4.3 Mirrorplanes: σ 16 4.4 Stereographicprojectiondiagrams 17 4.5 Inversion: i 19 4.6 Rotatoryreflections,orimproperrotations,S 19 n vi INTRODUCTIONTOSYMMETRYANDGROUPTHEORYFORCHEMISTS 4.7 Catalogue raisonée of the common point groups: symbols, molecularexamples,andmacroscopicexamples 20 5. INTRODUCTIONTOLINEARALGEBRA 23 5.1 Introduction 23 5.2 Systemsofcoordinates 23 5.3 Vectors 24 5.4 Normorlengthofavector 25 5.5 Anglesandinnerproducts 25 5.6 Generalizationstondimensions 26 5.7 Orthogonalityandnormality 26 5.8 Lineartransformationsandmatrices 27 5.9 Successivetransformations;matrixmultiplication 30 5.10 Theeffectonamatrixofachangeincoordinatesystem 31 5.11 Orthogonaltransformations 33 5.12 Tracesanddeterminants 34 5.13 Matrixrepresentationofsymmetrygroups 36 6. GROUPREPRESENTATIONSANDCHARACTERTABLES 39 6.1 Introduction 39 6.2 Grouprepresentations 41 6.3 Charactertables 46 6.4 Propertiesofcharactertables 48 6.5 Calculationswithcharactertables 49 7. MOLECULARVIBRATIONS 53 7.1 Introduction 53 7.2 Classicaldescriptionofmolecularvibrations 54 7.3 Eigenvalueproblems 57 7.4 Determinationofthesymmetriesofthenormalmodes 60 7.5 Useofinternalcoordinates 63 8. ELECTRONICSTRUCTUREOF ATOMSANDMOLECULES 65 8.1 Thequantum-mechanicalbackground 65 8.2 Symmetrypropertiesofwavefunctions 69 8.3 Molecularwavefunctions 71 8.3.1 Propertiesoftheexactwavefunctions 72 Contents vii 8.3.2 TheHartree-Fockapproximation 73 8.3.3 The Linear Combination of Atomic Orbitals (LCAO) approximation 75 8.4 Expectationvaluesandthevariationtheorem 76 9. SYMMETRYPROPERTIESOFMOLECULARORBITALS 83 9.1 Diatomicmolecules 83 9.2 Triatomicmolecule–Walshdiagrams 87 9.3 MolecularorbitalsforthebentAH2 molecule(C2v) 87 9.4 MolecularorbitalsforthelinearAH2 molecule(D∞h) 89 9.5 Correlationoforbitalsbetweenbentandlineargeometries 90 10.SPECTROSCOPYANDSELECTIONRULES 93 10.1 Introduction 93 10.2 Therelationshipbetweensymmetrypropertiesandthevanishing ofmatrixelements 93 10.3 Thedirect-productrepresentation 94 10.4 Selectionrulesinspectroscopy 97 10.4.1 Electronictransitions 98 10.4.2 Vibrationaltransitions 100 11.MOLECULARORBITALTHEORYOF PLANARCONJUGATEDMOLECULES 103 11.1 Introduction 103 11.2 TheLCAO–MOdescriptionofpyridine 104 11.3 Distributionofmolecularorbitalsamongsymmetryspecies 107 11.4 TheHückelapproximation 108 11.5 Projectionoperators 110 11.6 Generalpropertiesofprojectionoperators 114 Conclusion 119 Index 121 This page intentionally left blank Preface This book is based on a one-semester course for advanced undergraduates specializing in physical chemistry. I am aware that the mathematical training of most science majors is more heavily weighted towards analysis – typic- ally calculus anddifferential equations –than towards algebra. Butitremains my conviction that the basic ideas and applications of group theory are not onlyvital,butnotdifficulttolearn,eventhoughaformalmathematicalsetting withemphasisonrigorandcompletenessisnottheplacewheremostchemists wouldfeelmostcomfortable inlearningthem. Thepresentationhereisshort,andlimitedtothoseaspectsofsymmetryand group theory that are directly useful in interpreting molecular structure and spectroscopy. Nevertheless I hope that the reader will begin to sense some of thebeautyofthesubject. Symmetryisattheheartofourunderstanding ofthe physical lawsof nature. If areader ishappy withwhat appears in this book, I must count this a success. But if the book motivates a reader to move deeper intothesubject, Ishallbegratified. Cambridge, January2004