Universitext Jia-An Yan Introduction to Stochastic Finance Universitext Universitext Serieseditors SheldonAxler SanFranciscoStateUniversity CarlesCasacuberta UniversitatdeBarcelona AngusMacIntyre QueenMary,UniversityofLondon KennethRibet UniversityofCalifornia,Berkeley ClaudeSabbah Écolepolytechnique,CNRS,UniversitéParis-Saclay,Palaiseau EndreSüli UniversityofOxford WojborA.Woyczyn´ski CaseWesternReserveUniversity Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal even experimental approachtotheirsubjectmatter.Someofthemostsuccessfulandestablishedbooks intheserieshaveevolvedthroughseveraleditions,alwaysfollowingtheevolution ofteachingcurricula,toverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Moreinformationaboutthisseriesathttp://www.springer.com/series/223 Jia-An Yan Introduction to Stochastic Finance 123 Jia-AnYan AcademyofMathematicsandSystemScience ChinesesAcademyofSciences Beijing,China ISSN0172-5939 ISSN2191-6675 (electronic) Universitext ISBN978-981-13-1656-2 ISBN978-981-13-1657-9 (eBook) https://doi.org/10.1007/978-981-13-1657-9 LibraryofCongressControlNumber:2018952344 MathematicsSubjectClassification:91Gxx,60Gxx,60Hxx ©SpringerNatureSingaporePteLtd.andSciencePress2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface The history of financial mathematics can be traced back to the French mathemati- cian Louis Bachelier’s doctoral dissertation “Théorie de la speculation” in 1900 Bachelier (1900). Bachelier’s work, however, was not known to most economists until Paul A. Samuelson mentioned it in an article of 1965. In 1969 and 1971, Robert C. Merton studied the optimal portfolio problem in continuous-time using the stochastic dynamic programming method. In 1973, Fischer Black and Myron S. Scholes used stochastic analysis, in particular, Kiyosi Itô’s formula, to derive the famous Black-Scholes formula for option pricing. Almost at the same time, Merton(1973a)improvedtheBlack-Scholesmodelanddevelopedanideaofusing options to evaluate a company’s debt in the so-called contingent claims analysis. Harrison and Kreps (1979) proposed a martingale method to characterize a no- arbitrage market and the use of equivalent martingale measure on options pricing and hedging, which had profound influence on the subsequent development of financial mathematics. Since 1970s, in order to study the pricing of interest rate derivatives,manyscholarshaveproposedseveralinterestratetermstructuremodels, including Vasicek, CIR, HJM, and BGM models, which could reflect the market trendofthefuturespotrate. For more than half a century, many scholars worked research on theory and applications of financial mathematics (also known as mathematical finance) and published many books in the area. Financial mathematics not only has a direct impact on the innovation of financial instruments and on the efficient functioning of financial markets but also is widely used in investment decisions, valuation of researchanddevelopmentprojects,andinriskmanagement. This book is intended to give a systematic introduction to the basic theory of financial mathematics,withanemphasisonapplications ofmartingalemethodsin pricing and hedging of contingent claims, interest rate term structure models, and expected utility maximization problems. The book consists of 14 chapters. Chap- ter1introducesthebasictheoryofprobabilityanddiscretetimemartingales,which is specially designed for readers who do not have much knowledge of probability theory.InChap.2,weintroducethetheoryofdiscretetimeportfolioselection(i.e., Harry M. Markowitz’s mean-variance analysis), the capital asset pricing model v vi Preface (CAPM), the arbitrage pricing theory (APT), and the multistage mean-variance analysis. The basic idea of expected utility theory and the consumption-based asset pricing model are also sketched in this chapter. In Chap.3, we introduce discrete time financial markets and martingale characterization of arbitrage-free markets and present the martingale method for the expected utility maximization and the risk-neutral pricing principle for European contingent claims. Chapter 4 systematically presents Itô’s theory of stochastic analysis (including Itô’s integral andItô’sformula,Girsanov’stheorem,andthemartingalerepresentationtheorem) which is the theoretical basis of the martingale method in financial mathematics. Thischaptercanbeusedseparatelyasaconcisetextforpostgraduatesinprobability studying Itô’s theory of stochastic analysis. In Chap.5, for the Black-Scholes model, we introduce the martingale method for pricing and hedging European contingent claims and derive the Black-Scholes formula for pricing European options. The pricing of American options is also briefly discussed. In addition, some examples are given to illustrate applications of the martingale method, and several modifications of the Black-Scholes model are presented. In Chap.6, we introduce several commonly used exotic options: barrier options, Asian options, lookbackoptions,andresetoptions.Thepricingandhedgingoftheseexoticoptions are investigated with the martingale method and partial differential equations. Chapter7presentsItôprocessanddiffusionprocessmodels.Themartingalemethod of contingent claim pricing is presented in detail, including an introduction of time and scale transformation to give some explicit formulas for option pricing. Chapter 8 introduces the bond market and interest rate term structure models, including a variety of single-factor short-term interest rate model, HJM model, and BGM Model, and studies the pricing of interest rate derivatives. Chapter 9 introduces optimal investment portfolios and investment-consumption strategies for diffusion process models. Within L2-allowable trading strategies, the risk- mean portfolio selection problem, expected utility maximization problem, and the selection of portfolio strategy with consumption are investigated. Chapter 10 introduces the general theory of static risk measures, which includes consistent risk measures, convex risk measures, comonotonically sub-additive risk measures, comonotonically convex risk measure, and a variety of distribution invariant risk measures, as well as their characterizations and representations. In Chap.11, after a brief overview of semimartingales and stochastic calculus, we introduce some basicconceptsandresultsonmarketsofsemimartingalemodelandgivenumeraire- free characterizations of attainable contingent claims. In Chap.12, we give a survey on convex duality theory for optimal investment and present a numeraire- free and original probability-based framework for financial markets. The expected utilitymaximizationandvaluationproblemsinageneralsemimartingalesettingare studiedinChap.13.ForamarketdrivenbyaLévyprocess,theoptimalportfolioand therelatedmartingalemeasureareworkedoutexplicitlyforsomeparticulartypesof utilityfunction.Finally,inChap.14,weintroducethe“optimalgrowthportfolios” inmarketsofsemimartingalemodelandworkouttheirexpressionsinageometric Lévyprocessmodelandajump-diffusion-likeprocessmodel. Preface vii I have taught from the manuscript of this book in an introductory course of mathematicalfinanceformyformergraduatestudents.Thankstothemforreporting misprints and errors. I am grateful to Prof. Jianming Xia for contributing to the writingofSect.9.2ofChap.9;toDr.YongshengSongforhisPhDthesis,whichis the basic material for Chap.10 of the book; and to Dr. Jun Yan for typographical andgrammaticalsuggestions. Beijing,China Jia-AnYan May,2018 Contents 1 Foundation of Probability Theory and Discrete-Time Martingales ................................................................. 1 1.1 BasicConceptsofProbabilityTheory............................... 1 1.1.1 EventsandProbability ..................................... 1 1.1.2 Independence,0-1Law,andBorel-CantelliLemma...... 3 1.1.3 Integrals,(Mathematical)ExpectationsofRandom Variables .................................................... 5 1.1.4 ConvergenceTheorems .................................... 7 1.2 ConditionalMathematicalExpectation ............................. 9 1.2.1 DefinitionandBasicProperties............................ 9 1.2.2 ConvergenceTheorems .................................... 14 1.2.3 TwoTheoremsAboutConditionalExpectation........... 15 1.3 DualsofSpacesL∞((cid:2),F)andL∞((cid:2),F,m) .................... 17 1.4 FamilyofUniformlyIntegrableRandomVariables ................ 18 1.5 DiscreteTimeMartingales........................................... 22 1.5.1 BasicDefinitions ........................................... 22 1.5.2 BasicTheorems............................................. 24 1.5.3 MartingaleTransforms..................................... 27 1.5.4 SnellEnvelop ............................................... 30 1.6 MarkovSequences ................................................... 31 2 PortfolioSelectionTheoryinDiscrete-Time............................. 33 2.1 Mean-VarianceAnalysis............................................. 34 2.1.1 Mean-Variance Frontier Portfolios Without Risk-FreeAsset............................................. 35 2.1.2 RevisedFormulationsofMean-VarianceAnalysis WithoutRisk-FreeAsset ................................... 38 2.1.3 Mean-VarianceFrontierPortfolioswithRisk-Free Asset......................................................... 43 2.1.4 Mean-VarianceUtilityFunctions .......................... 45 ix x Contents 2.2 CapitalAssetPricingModel(CAPM) .............................. 47 2.2.1 MarketCompetitiveEquilibriumandMarketPortfolio .. 47 2.2.2 CAPMwithRisk-FreeAsset............................... 49 2.2.3 CAPMWithoutRisk-FreeAsset........................... 52 2.2.4 EquilibriumPricingUsingCAPM ........................ 53 2.3 ArbitragePricingTheory(APT)..................................... 54 2.4 Mean-SemivarianceModel .......................................... 57 2.5 MultistageMean-VarianceModel................................... 58 2.6 ExpectedUtilityTheory ............................................. 62 2.6.1 UtilityFunctions............................................ 63 2.6.2 Arrow-Pratt’sRiskAversionFunctions.................... 64 2.6.3 ComparisonofRiskAversionFunctions.................. 66 2.6.4 PreferenceDefinedbyStochasticOrders.................. 66 2.6.5 MaximizationofExpectedUtilityandInitialPrice ofRiskyAsset .............................................. 70 2.7 Consumption-BasedAssetPricingModels ......................... 72 3 FinancialMarketsinDiscreteTime...................................... 75 3.1 BasicConceptsofFinancialMarkets ............................... 75 3.1.1 Numeraire................................................... 76 3.1.2 PricingandHedging........................................ 76 3.1.3 Put-CallParity.............................................. 76 3.1.4 IntrinsicValueandTimeValue ............................ 77 3.1.5 Bid-AskSpread............................................. 77 3.1.6 EfficientMarketHypothesis ............................... 78 3.2 BinomialTreeModel ................................................ 78 3.2.1 TheOne-PeriodCase....................................... 78 3.2.2 TheMultistageCase........................................ 79 3.2.3 TheApproximatelyContinuousTradingCase............ 82 3.3 TheGeneralDiscrete-TimeModel.................................. 83 3.3.1 TheBasicFramework...................................... 83 3.3.2 Arbitrage,Admissible,andAllowableStrategies......... 85 3.4 MartingaleCharacterizationofNo-ArbitrageMarkets............. 86 3.4.1 TheFiniteMarketCase .................................... 86 3.4.2 TheGeneralCase:Dalang-Morton-WillingerTheorem.. 87 3.5 PricingofEuropeanContingentClaims............................. 90 3.6 MaximizationofExpectedUtilityandOptionPricing............. 92 3.6.1 GeneralUtilityFunctionCase ............................. 92 3.6.2 HARAUtilityFunctionsandTheirDualityCase......... 94 3.6.3 UtilityFunction-BasedPricing ............................ 96 3.6.4 MarketEquilibriumPricing................................ 99 3.7 AmericanContingentClaimsPricing ............................... 103 3.7.1 Super-HedgingStrategiesinCompleteMarkets.......... 103 3.7.2 Arbitrage-FreePricinginCompleteMarkets ............. 104 3.7.3 Arbitrage-FreePricinginNon-completeMarkets ........ 105