Introduction to Statistical Decision Theory Utility Theory and Causal Analysis Introduction to Statistical Decision Theory Utility Theory and Causal Analysis Silvia Bacci Bruno Chiandotto CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2020byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-1-138-08356-1(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea- sonable e(cid:11)orts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,micro(cid:12)lming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen- ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not- for-pro(cid:12)t organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade- marks,andareusedonlyforidenti(cid:12)cationandexplanationwithoutintenttoinfringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my parents, Mauro and Giovanna. And to my decisions without uncertainty: Massimo, Lorenzo, Serena. S. Bacci In memory of my (cid:12)rst teacher of probability and statistics: Giuseppe Pompilj. B. Chiandotto Contents Authors xi Preface xiii 1 Statistics and decisions 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Decision theory . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Value theory and utility theory . . . . . . . . . . . . . . . . 4 1.4 Decisions and informational background . . . . . . . . . . . 6 1.5 Statistical inference and decision theory . . . . . . . . . . . 10 1.6 The decision-making approach to statistics . . . . . . . . . 13 2 Probability and statistical inference 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Random experiments, events, and probability . . . . . . . . 18 2.3 Bayes’ rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Univariate random variables . . . . . . . . . . . . . . . . . . 25 2.5 Multivariate random variables . . . . . . . . . . . . . . . . . 36 2.6 The exponential family . . . . . . . . . . . . . . . . . . . . . 46 2.7 Descriptive statistics and statistical inference . . . . . . . . 48 2.8 Sample distributions . . . . . . . . . . . . . . . . . . . . . . 51 2.9 Classical statistical inference . . . . . . . . . . . . . . . . . 56 2.9.1 Optimal point estimators . . . . . . . . . . . . . . . . 58 2.9.2 Point estimation methods . . . . . . . . . . . . . . . 62 2.9.3 Con(cid:12)dence intervals. . . . . . . . . . . . . . . . . . . 69 2.9.4 Hypothesis testing . . . . . . . . . . . . . . . . . . . 71 2.10 Bayesian statistical inference . . . . . . . . . . . . . . . . . 78 2.10.1 Conjugate prior distributions . . . . . . . . . . . . . 84 2.10.2 Uninformative prior distributions . . . . . . . . . . . 88 2.10.3 Bayesian point and interval estimation . . . . . . . . 91 2.10.4 Bayesian hypothesis testing . . . . . . . . . . . . . . 92 2.11 Multiple linear regression model . . . . . . . . . . . . . . . 94 2.11.1 The statistical model . . . . . . . . . . . . . . . . . . 95 2.11.2 Least squares estimator and maximum likelihood estimator. . . . . . . . . . . . . . . . . . . . . . . . . 96 vii viii Contents 2.11.3 Hypothesis testing . . . . . . . . . . . . . . . . . . . 98 2.11.4 Bayesian regression . . . . . . . . . . . . . . . . . . . 100 2.12 Structural equation model . . . . . . . . . . . . . . . . . . . 101 3 Utility theory 109 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.2 Binary relations and preferences . . . . . . . . . . . . . . . 110 3.3 Decisions under certainty: Value theory . . . . . . . . . . . 111 3.4 Decisions under risk: Utility theory . . . . . . . . . . . . . . 118 3.4.1 von Neumann and Morgenstern’s theory . . . . . . . 120 3.4.2 Savage’s theory . . . . . . . . . . . . . . . . . . . . . 127 3.5 Empirical failures of rational behavioral axioms . . . . . . . 131 3.5.1 Violation of transitivity. . . . . . . . . . . . . . . . . 131 3.5.2 Certainty e(cid:11)ect . . . . . . . . . . . . . . . . . . . . . 133 3.5.3 Pseudo-certainty e(cid:11)ect and isolation e(cid:11)ect . . . . . . 134 3.5.4 Framing e(cid:11)ect . . . . . . . . . . . . . . . . . . . . . . 135 3.5.5 Extreme probability e(cid:11)ect . . . . . . . . . . . . . . . 136 3.5.6 Aversion to uncertainty. . . . . . . . . . . . . . . . . 137 3.6 Alternative utility theories . . . . . . . . . . . . . . . . . . . 138 3.6.1 Rank-dependent utility theory . . . . . . . . . . . . . 142 3.6.2 Prospect theory and cumulative prospect theory . . . 143 4 Utility function elicitation 147 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.2 Attitude towards risk . . . . . . . . . . . . . . . . . . . . . 148 4.3 A measure of risk aversion . . . . . . . . . . . . . . . . . . . 155 4.4 Classical elicitation paradigm . . . . . . . . . . . . . . . . . 156 4.4.1 Standard gamble methods . . . . . . . . . . . . . . . 158 4.4.2 Paired gamble methods . . . . . . . . . . . . . . . . . 162 4.4.3 Other classical elicitation methods . . . . . . . . . . 166 4.5 Multi-step approaches . . . . . . . . . . . . . . . . . . . . . 167 4.6 Partial preference information paradigm . . . . . . . . . . . 169 4.7 Combining multiple preferences . . . . . . . . . . . . . . . . 172 4.8 Case study: Utility elicitation for banking foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5 Classical and Bayesian statistical decision theory 179 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.2 Structure of the decision-making process . . . . . . . . . . . 180 5.3 Decisions under uncertainty (classical decision theory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.4 Decisions with sample information (classical statistical decision theory) . . . . . . . . . . . . . . . . . . . 188 5.5 Decisions with sample and prior information (Bayesian statistical decisional theory) . . . . . . . . . . . . 195 Contents ix 5.6 Perfect information and sample information . . . . . . . . . 204 5.7 Case study: Seeding hurricanes . . . . . . . . . . . . . . . . 214 6 Statistics, causality, and decisions 225 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.2 Causality and statistical inference . . . . . . . . . . . . . . 226 6.3 Causal inference . . . . . . . . . . . . . . . . . . . . . . . . 230 6.3.1 Statistical causality . . . . . . . . . . . . . . . . . . . 231 6.3.2 Modern causal inference . . . . . . . . . . . . . . . . 232 6.3.3 Structural equation approach to causal inference. . . 236 6.4 Causal decision theory . . . . . . . . . . . . . . . . . . . . . 244 6.5 Case study: Subscription fees of the RAI - Radiotelevisione Italiana . . . . . . . . . . . . . . . . . . . . 249 6.6 Case study: Customer satisfaction for the RAI - Radiotelevisione Italiana . . . . . . . . . . . . . . . . . . . . 256 References 267 Index 283