ebook img

Introduction to statistical decision: utility theory and causal analysis PDF

305 Pages·2020·1.898 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to statistical decision: utility theory and causal analysis

Introduction to Statistical Decision Theory Utility Theory and Causal Analysis Introduction to Statistical Decision Theory Utility Theory and Causal Analysis Silvia Bacci Bruno Chiandotto CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2020byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-1-138-08356-1(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea- sonable e(cid:11)orts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,micro(cid:12)lming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen- ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not- for-pro(cid:12)t organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade- marks,andareusedonlyforidenti(cid:12)cationandexplanationwithoutintenttoinfringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my parents, Mauro and Giovanna. And to my decisions without uncertainty: Massimo, Lorenzo, Serena. S. Bacci In memory of my (cid:12)rst teacher of probability and statistics: Giuseppe Pompilj. B. Chiandotto Contents Authors xi Preface xiii 1 Statistics and decisions 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Decision theory . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Value theory and utility theory . . . . . . . . . . . . . . . . 4 1.4 Decisions and informational background . . . . . . . . . . . 6 1.5 Statistical inference and decision theory . . . . . . . . . . . 10 1.6 The decision-making approach to statistics . . . . . . . . . 13 2 Probability and statistical inference 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Random experiments, events, and probability . . . . . . . . 18 2.3 Bayes’ rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Univariate random variables . . . . . . . . . . . . . . . . . . 25 2.5 Multivariate random variables . . . . . . . . . . . . . . . . . 36 2.6 The exponential family . . . . . . . . . . . . . . . . . . . . . 46 2.7 Descriptive statistics and statistical inference . . . . . . . . 48 2.8 Sample distributions . . . . . . . . . . . . . . . . . . . . . . 51 2.9 Classical statistical inference . . . . . . . . . . . . . . . . . 56 2.9.1 Optimal point estimators . . . . . . . . . . . . . . . . 58 2.9.2 Point estimation methods . . . . . . . . . . . . . . . 62 2.9.3 Con(cid:12)dence intervals. . . . . . . . . . . . . . . . . . . 69 2.9.4 Hypothesis testing . . . . . . . . . . . . . . . . . . . 71 2.10 Bayesian statistical inference . . . . . . . . . . . . . . . . . 78 2.10.1 Conjugate prior distributions . . . . . . . . . . . . . 84 2.10.2 Uninformative prior distributions . . . . . . . . . . . 88 2.10.3 Bayesian point and interval estimation . . . . . . . . 91 2.10.4 Bayesian hypothesis testing . . . . . . . . . . . . . . 92 2.11 Multiple linear regression model . . . . . . . . . . . . . . . 94 2.11.1 The statistical model . . . . . . . . . . . . . . . . . . 95 2.11.2 Least squares estimator and maximum likelihood estimator. . . . . . . . . . . . . . . . . . . . . . . . . 96 vii viii Contents 2.11.3 Hypothesis testing . . . . . . . . . . . . . . . . . . . 98 2.11.4 Bayesian regression . . . . . . . . . . . . . . . . . . . 100 2.12 Structural equation model . . . . . . . . . . . . . . . . . . . 101 3 Utility theory 109 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.2 Binary relations and preferences . . . . . . . . . . . . . . . 110 3.3 Decisions under certainty: Value theory . . . . . . . . . . . 111 3.4 Decisions under risk: Utility theory . . . . . . . . . . . . . . 118 3.4.1 von Neumann and Morgenstern’s theory . . . . . . . 120 3.4.2 Savage’s theory . . . . . . . . . . . . . . . . . . . . . 127 3.5 Empirical failures of rational behavioral axioms . . . . . . . 131 3.5.1 Violation of transitivity. . . . . . . . . . . . . . . . . 131 3.5.2 Certainty e(cid:11)ect . . . . . . . . . . . . . . . . . . . . . 133 3.5.3 Pseudo-certainty e(cid:11)ect and isolation e(cid:11)ect . . . . . . 134 3.5.4 Framing e(cid:11)ect . . . . . . . . . . . . . . . . . . . . . . 135 3.5.5 Extreme probability e(cid:11)ect . . . . . . . . . . . . . . . 136 3.5.6 Aversion to uncertainty. . . . . . . . . . . . . . . . . 137 3.6 Alternative utility theories . . . . . . . . . . . . . . . . . . . 138 3.6.1 Rank-dependent utility theory . . . . . . . . . . . . . 142 3.6.2 Prospect theory and cumulative prospect theory . . . 143 4 Utility function elicitation 147 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.2 Attitude towards risk . . . . . . . . . . . . . . . . . . . . . 148 4.3 A measure of risk aversion . . . . . . . . . . . . . . . . . . . 155 4.4 Classical elicitation paradigm . . . . . . . . . . . . . . . . . 156 4.4.1 Standard gamble methods . . . . . . . . . . . . . . . 158 4.4.2 Paired gamble methods . . . . . . . . . . . . . . . . . 162 4.4.3 Other classical elicitation methods . . . . . . . . . . 166 4.5 Multi-step approaches . . . . . . . . . . . . . . . . . . . . . 167 4.6 Partial preference information paradigm . . . . . . . . . . . 169 4.7 Combining multiple preferences . . . . . . . . . . . . . . . . 172 4.8 Case study: Utility elicitation for banking foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5 Classical and Bayesian statistical decision theory 179 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.2 Structure of the decision-making process . . . . . . . . . . . 180 5.3 Decisions under uncertainty (classical decision theory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.4 Decisions with sample information (classical statistical decision theory) . . . . . . . . . . . . . . . . . . . 188 5.5 Decisions with sample and prior information (Bayesian statistical decisional theory) . . . . . . . . . . . . 195 Contents ix 5.6 Perfect information and sample information . . . . . . . . . 204 5.7 Case study: Seeding hurricanes . . . . . . . . . . . . . . . . 214 6 Statistics, causality, and decisions 225 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.2 Causality and statistical inference . . . . . . . . . . . . . . 226 6.3 Causal inference . . . . . . . . . . . . . . . . . . . . . . . . 230 6.3.1 Statistical causality . . . . . . . . . . . . . . . . . . . 231 6.3.2 Modern causal inference . . . . . . . . . . . . . . . . 232 6.3.3 Structural equation approach to causal inference. . . 236 6.4 Causal decision theory . . . . . . . . . . . . . . . . . . . . . 244 6.5 Case study: Subscription fees of the RAI - Radiotelevisione Italiana . . . . . . . . . . . . . . . . . . . . 249 6.6 Case study: Customer satisfaction for the RAI - Radiotelevisione Italiana . . . . . . . . . . . . . . . . . . . . 256 References 267 Index 283

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.