Introduction to S TATICS and D YNAMICS Problem Book Rudra Pratap and Andy Ruina Spring 2001 (cid:176)c Rudra Pratap and Andy Ruina, 1994-2001. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission of the authors. This book is a pre-release version of a book in progress for Oxford University Press. The following are amongst those who have helped with this book as editors, artists, advisors, or critics: Alexa Barnes, Joseph Burns, Jason Cortell, Ivan Dobrianov, GaborDomokos, ThuDong, GailFish, JohnGibson, SaptarsiHal- dar,DaveHeimstra,TheresaHowley,HerbertHui,MichaelMarder,ElainaMc- Cartney,ArthurOgawa,KalpanaPratap,RichardRand,DaneQuinn,Phoebus Rosakis,LesSchaefier,DavidShipman,JillStartzell,SaskyavanNouhuys,Bill Zobrist. Mike Coleman worked extensively on the text, wrote many of the ex- amples and homework problems and created many of the flgures. David Ho has brought almost all of the artwork to its present state. Some of the home- work problems are modiflcations from the Cornell’s Theoretical and Applied MechanicsarchivesandthusareduetoT&AMfacultyortheirlibrariesinways that we do not know how to give proper attribution. Many unlisted friends, colleagues,relatives,students,andanonymousreviewershavealsomadehelpful suggestions. SoftwareusedtopreparethisbookincludesTeXtures,BLUESKY’simplemen- tation of LaTeX, Adobe Illustrator and MATLAB. Most recent text modiflcations on January 21, 2001. Contents ProblemsforChapter1 : : : : : : : : : : : : : : : : : : : : : : : : : : 0 ProblemsforChapter2 : : : : : : : : : : : : : : : : : : : : : : : : : : 2 ProblemsforChapter3 : : : : : : : : : : : : : : : : : : : : : : : : : : 10 ProblemsforChapter4 : : : : : : : : : : : : : : : : : : : : : : : : : : 15 ProblemsforChapter5 : : : : : : : : : : : : : : : : : : : : : : : : : : 18 ProblemsforChapter6 : : : : : : : : : : : : : : : : : : : : : : : : : : 31 ProblemsforChapter7 : : : : : : : : : : : : : : : : : : : : : : : : : : 41 ProblemsforChapter8 : : : : : : : : : : : : : : : : : : : : : : : : : : 60 ProblemsforChapter9 : : : : : : : : : : : : : : : : : : : : : : : : : : 74 ProblemsforChapter10 : : : : : : : : : : : : : : : : : : : : : : : : : : 83 ProblemsforChapter11 : : : : : : : : : : : : : : : : : : : : : : : : : : 88 ProblemsforChapter12 : : : : : : : : : : : : : : : : : : : : : : : : : : 100 Answersto*’dquestions ProblemsforChapter1 1 Problems for Chapter 1 Introduction to mechanics Because no mathematicalskillshavebeentaughtsofar,the questionsbelowjustdemonstratetheideasand vocabulary you should have gained from the reading. 1.1Whatismechanics? 1.2Brieflydefineeachofthewordsbelow(us- ing rough English, not precise mathematical language): a) Statics, b) Dynamics, c) Kinematics, d) Strengthofmaterials, e) Force, f) Motion, g) Linearmomentum, h) Angularmomentum, i) Arigidbody. 1.3Thischaptersaystherearethree“pillars” ofmechanicsofwhichthethirdis‘Newton’s’ laws,whataretheothertwo? 1.4Thisbookorgainzesthelawsofmechanics into4basiclawsnumberred0-III,notthestan- dard ‘Newton’s three laws’. What are these fourlaws(inEnglish,noequationsneeded)? 1.5Describe,aspreciselyaspossible,aprob- lem that is not mentionned in the book but which is a mechanics problem. State which quantities are given and what is to be deter- minedbythemechanicssolution. 1.6Describeanengineeringproblemwhichis notamechanicsproblem. 1.7AbouthowoldareNewton’slaws? 1.8 Relativity and quantum mechanics have overthrownNewton’slaws.Whyareengineers stillusingthem? 1.9Computationispartofmodernengineering. a) What are the three primary computer skillsyouwillneedfordoingproblems inthisbook? b) Giveexamplesofeach(differentthatn theexamplesgiven). c) (optional)Doanexampleofeachona computer. 2 CONTENTS Problems for Chapter 2 Vectorskillsformechanics B r*BC C b2e.1lo1w,Fofirndthetheunsitcavleacrstor(cid:11)s (cid:21)aO1ndan(cid:12)d (cid:21)sO2ucshhotwhant (cid:11)(cid:21)O −3(cid:21)O D(cid:12)|O. r* 2 2 y CD 2.1Vectornotationandvec- tor addition r*AB (cid:21)O2 D 1 O k 60o t2h.1reReedpifrfeesreenntttwheayvse.ctorr*D5m{O−2m|Oin A |O 1 (cid:21)O1 x problem2.5: problem2.11: (Filename:pfigure2.vec1.5) (Filename:pfigure2.vec1.11) 2.2Whichoneofthefollowingrepresentations p ofthesamevectorF*iswrongandwhy? 2m.6DTh5ekgforacreessahcotwinngionnthaebfilogcukreo,fwmhearses 2.12 Inthefigureshown,T1D20 2N;T2D a) b) 40N,andW issuchthatthesumofthethree F1 D20*N; F2*D50*N,and*W Dmg. Find forcesequalszero.IfWisdoubled,find(cid:11)and |O 2N thesumF .DF1CF2CW*/? (cid:12)suchthat(cid:11)T*1;(cid:12)T*2,and2W* stillsumupto 3N -3N{OC2N|O F*1 F2 zero. y {O 4 3 c) d) p T p 13N 3 4 2 T1 13N 2 2 3 60o 45o 3 x problem2.2: * W (Filename:pfigure2.vec1.2) problem2.6: (Filename:pfigure2.vec1.6) 2.3 Thereareexactlytworepresentationsthat W 2.7 Three position vectors are shown in the dtuersecsr.ibMeatthcehstahmeecovrercetcotrpiincttuhreesfoinlltoowpianigrsp.ic- fipgure below. Given that r*B=A D 3m.12{OC problem2.12: (Filename:pfigure2.vec1.12) a) 4N b) 4N 23|O/andr*C=BD1m{O−2m|O,findr*A=C. |O B 2.13Inthefigureshown,rodsABandBCare each 4 cm long and lie along y and x axes, 30o 30o respectively. RodCDisinthe xz planeand {O |O makesanangle(cid:18) D30owiththex-axis. c) d) (a) Findr* intermsofthevariablelength AD 2N p {O ‘. p 2N(-{OC 3|O) (b) Find‘and(cid:11)suchthat 2 3N r* D r* −r* C(cid:11)kO: C AD AB BC e) f) z A 3N{OC1N|O 3N(13{OC|O) problem2.7: D problem2.3: (Filename:pfigure2.vec1.7) ‘ (Filename:pfigure2.vec1.3) 2.8GiventhatthesumoffourvectorsF*;i D A 4cm B * i* y 22.N4|OF;inF*d tDhe3su0mN.opf1f{OorCcesp1F*|1O/;Dan2d0FN*{O −D −15to0N4|,O;isF*3zeDro,10wNh.e−re{OFC1|OD/,fi2n0dNF*{O4;.F2 D 30o 4cm −20N.−2{OCp3|O/. 2 2 3 2.9 Three forces F* D 2*N{O −5N|O;R* D prxoblem2.13:C 10N.cos(cid:18){OCsin(cid:18)|O/andW D−20N|O,sum (Filename:pfigure2.vec1.13) uptozero.Determinetheangle(cid:18)anddrawthe 2vrr**e.C5cDto.IDrns 2tahrfeet.fi|r*OAgCuBrekOD/s.h3oFwfitnnkOd;btr*ehBleoCwpo,Dstiht2ieofnpt|oOvs,eictaitnoodnr f32o:.12rc0NeG{Ovie−vcetn0o:rt4hR*Nat|cRO*l,1efiaDnrldy12sNRh*o{OwCCi1n5:g5R*iNts.|OdiarnecdtiRo*2n.D tm32h0.1eaNg4tn{wOFi−toiun4ddf0eostNrh.ce|eOsma,nardgepFn*ri2teusDdeen3sti0nogNft{OthhCee4mf0orNwce|iOst.hFD*t1hraeDwir AD 1 2 ProblemsforChapter2 3 * 2.15 Two forces R D 2N.0:16{O C 2.21 A1m(cid:2)1msquareboardissupported 2.24 Acirculardiskofradius6inismounted * 0:80|O/andW D −36N|O act on a particle. bytwostringsAEandBF.Thetensioninthe onaxlex-xattheendanL-shapedbarasshown Findthemagnitudeofthenetforce. Whatis string BF is 20N. Express this tension as a inthefigure. Thediskistipped45owiththe thedirectionofthisforce? vector. horizontal bar AC. Two points, P and Q, are y markedontherimoftheplate;Pdirectlypar- 2.16InProblem2.13,find‘suchthatthelength 2.5m alleltothecenterCintothepage,andQatthe ofthepositionvectorr* is6cm. highest point above the center C. Taking the AD F basevectors{O;|O,andkOasshowninthefigure, 2oF.f21F7D*23−In00Ft*hN1e..fiFginyudrethsehmowagnn,itFu1deDand10d0irNectainodn E 1 12m 2m find((ba)) tthheemrelaagtniviteupdoesjir*tiQo=nPvj.ectorr*Q=P, 1m F*2-F*1 A B kO |O Q C P F F2 plate 1m {O Q 6" 1 45o D 45o 30o D C x A C x problem2.21: 6" problem2.17: (Filename:pfigure2.vec1.21) 12" D (Filename:pfigure2.vec1.17) O 2.22 ThetopofanL-shapedbar,showninthe * * figure,istobetiedbystringsADandBDto x x 2.18 LettwoforcesP andQactinthedirec- thepointsAandBinthe yz plane. Findthe problem2.24: tionshowninthefigure. Youareallowedto lengthofthestringsADandBDusingvectors (Filename:pfigure2.vec1.24) changethedirectionoftheforcesbychanging r* andr* . theangles(cid:11) and(cid:18) whilekeepingthemagni- AD BD itudesfixed. Whatshouldbethevaluesof(cid:11) B 2.25 Findtheunitvector(cid:21)O ,directedfrom * * AB and(cid:18)ifthemagnitudeofPCQhastobethe pointAtopointBshowninthefigure. maximum? y y y 2m 3m B Q 1m A 2m P (cid:11) (cid:18) 1m x 1m problem2.18: x (Filename:pfigure2.vec1.18) A problem2.25: (Filename:pfigure2.vec1.25) 2.19TwopointsAandBarelocatedinthexy plane. ThecoordinatesofAandBare(4mm, 8mm)and(90mm,6mm),respectively. 30o x 2.26 FindaunitvectoralongstringBAand (a) Drawpositionvectorsr* andr*. expressthepositionvectorofAwithrespectto (b) Findthemagnitudeofr*A andr*B. z B,r*A=B,intermsoftheunitvector. A B problem2.22: y (c) HowfarisAfromB? (Filename:pfigure2.vec1.22) 1.5m 2.23 Acubeofside6inisshowninthefigure. 2.20 Inthefigureshown,aballissuspended (a) FindthepositionvectorofpointF,r*, A wit(haa)0F.8inmdlothnegpcoosridtifornomveac2tomrlr*oBngofhtohiestbOaAll.. fr*rFo=mc:thevectorsumr*FD r*DCr*C=DCF 2.5m (b) Findthedistanceoftheballfromthe (b) Calculatejr*j. 1m x origin. F 3m y A (c) Findr*Gusingr*F. B z y z problem2.26: 0.8m E F m (Filename:pfigure2.vec1.26) 2 D C B H G 2.27 Inthestructureshowninthefigure,‘D 45o 2ft;hD1:5ft.TheforceinthespringisF*D kr* ,wherekD100lbf=ft.Findaunitvector O x A B x O AB problem2.20: (Filename:pfigure2.vec1.20) problem2.23: (Filename:pfigure2.vec1.23) (cid:21)F*ABDaFlo(cid:21)nOAgBA.B and calculate the spring force 4 CONTENTS y * 2.34FindthedotproductoftwovectorsF D 2.43 Usethedotproducttoshow‘thelawof C 10lbf{O−20lbf|Oand(cid:21)O D0:8{OC0:6|O.Sketch cosines’;i. e., * O F and(cid:21)andshowwhattheirdotproductrep- c2Da2Cb2C2abcos(cid:18): B resents. (Hint: *c =a*+*b;also,*c(cid:1)*c D*c(cid:1)*c) 2.35ThepositionvectorofapointAis r* D A 30o 30cm{O. Findthedotproductof r* with(cid:21)O D b p A ‘ c h 3{OC 1|O. 2 2 (cid:18) O x 2.36Fromthefigurebelow,findthecomponent problem2.27: offorceF*inthedirectionof(cid:21)O. a y (Filename:pfigure2.vec1.27) problem2.43: 2.28Expressthevectorr* D2m{O−3m|OC (Filename:pfigure.blue.2.1) 5inmdikcOaitnintegrimtssdoifreitcstmioang.niAtudeandaunitvector (cid:21)O F=100N 32:.454in|(Oa−) 4D:r9a5winktOh.e(bv)eFctionrdtrh*eaDngle3:t5hiisnv{OeCc- 30o 10o tormakeswiththez-axis. (c)Findtheangle 2.29 Let F* D 10lbf{OC30lbf|O and W* D x thisvectormakeswiththex-yplane. problem2.36: −20lbf|O.Findaunitvectorinthedirectionof 2.45 Inthefigureshown,(cid:21)O andnOareunitvec- * * (Filename:pfigure2.vec1.33) thenetforceF CW,andexpressthethenet tors parallel and perpendicular to the surface forceintermsoftheunitvector. 2.37 Find the angle between F* D 2N{O C AB,respectively. AforceW* D−50N|Oacts * 1 * 5N|OandF D−2N{OC6N|O. ontheblock.FindthecomponentsofWalong 2.30Let(cid:21)O1D0:80{OC0:60|Oand(cid:21)O2D0:5{OC 2 (cid:21)O andnO. 0:866|O. 2.38AforceF*isdirectedfrompointA(3,2,0) A (a) Showthat(cid:21)O and(cid:21)O areunitvectors. topointB(0,2,4). Ifthe x-componentofthe nO 1 2 forceis120 N,findthe y-andz-components |O (b) Isthesumofthesetwounitvectorsalso ofF*. (cid:21)O aunitvector? Ifnot, thenfindaunit vectoralongthesumof(cid:21)O1and(cid:21)O2. a2s.3F9*ADfo−rc2e0alcbtfi{nOgCo2n2albbfe|aOdCof1m2labsfskOm.Wisghiavteins {O O W 30o B 2.31IfamassslidesfrompointAtowardspoint theanglebetweentheforceandthez-axis? problem2.45: BpoainlotsngAaanstdraBigahrtep(a0thina,n5dinth,e0cino)oradnidna(t1e0sionf, 2.40Given!*D2rad=s{OC*3rad=s|O; H*1 D 2.46 Fromthefigureshow(Finle,nafimned:pfithguerec2.ovemc1p.4o1-) 0(cid:21)OAinB, d1i0reinc)te,drefsropmectAivetolyB, fianlodngthteheunpiatthv.ector .62kO0/{OkCg3m02|O=/sk,gfimnd2(=as)athnedaHng2leDbe.t1w0e{OeCn1!*5|aOnCd pnoensittsioonfvveeccttoorr)r*aAloBn(gyouhavetofirstfindthis * H*1and(b)theanglebetween!*andH*2. (a) they-axis,and 120.3N2kWO;rFi*t2ethDeve−c2to0rNsF|O1CD23N0NkO{;OCan4d0F*N3|O−D 2nO.4D1T0:h7e4{uOnCit0n:o6r7m|Oa.lItfothaesuwrefaigchetiosfgaivbelnocaks (b) alongz(cid:21)O. −10N{O−100NkO asalistofnumbers(rows onthissurfaceactsinthe−|O direction, find orcolumns). Findthesumoftheforcesusing theanglethata1000 Nnormalforcemakes 2m acomputer. withthedirectionofweightoftheblock. A 2.42Vectoralgebra.Foreachequationbelow B 2.2 The dot product of two statewhether: 2m 1m 3m vectors (a) Theequationisnonsense. Ifso,why? 30o y (b) Isalwaystrue.Why?Giveanexample. O (cid:21) (c) Isnevertrue. Why? Giveanexample. 2.33 ExpresstheunitvectorsnOand(cid:21)O interms x of{Oand|Oshowninthefigure.Whatarethex (d) Issometimestrue.Giveexamplesboth problem2.46: ways. andycomponentsofr*D3:0ftnO−1:5ft(cid:21)O?(cid:3) (Filename:pfigure2.vec1.42) Youmayusetrivialexamples. * * * * * 2.47ThenetforceactingonaparticleisF D y a) ACB DBCA 2N{OC10N|O. Find the components of this (cid:21)O nO b) A**C*bDb*CA** fsoisrcveecintorasn{oO0thDer−cocoorsdi(cid:18)n{OatCe ssyinst(cid:18)e|mOawndith|O0bDa- |O (cid:18) c) A(cid:1)B DB(cid:1)A −sin(cid:18){O−cos(cid:18)|O. For(cid:18) D 30o, sketchthe * d) B*=C*DB=C vectorF andshowitscomponentsinthetwo coordinatesystems. {O x e) b=A*Db=A problem2.33: * * * * * * * * * * 2.48 FindtheunitvectorseORandeO(cid:18) interms (Filename:efig1.2.27) f) AD.A(cid:1)B/BC.A(cid:1)C/CC.A(cid:1)D/D of{Oand|Owiththegeometryshowninfigure. ProblemsforChapter2 5 * * * * * WhatarethecomponetsofW alongeO and 2.54 Write a computer program (or use a a) B(cid:2)CDC(cid:2)B R eO(cid:18)? canned program) to find the dot product of b) B*(cid:2)C*DC*(cid:1)B* two 3-D vectors. Test the program by com- putingthedotproducts{O(cid:1){O;{O(cid:1)|O; and|O(cid:1)kO. c) C*(cid:1).A*(cid:2)B*/DB*(cid:1).C*(cid:2)A*/ Nowusetheprogramtofindthecomponents * * * * * * * * * of F* D .2{O C2|O −3kO/N along the line d) A(cid:2).B(cid:2)C/D.A(cid:1)C/B−.A(cid:1)B/C (cid:18) ‘ r* D.0:5{O−0:2|OC0:1kO/m. * AB 2.58WhatisthemomentMproducedbya20 |O (cid:18)2n.55DL(cid:18)e0t−r*nnD1(cid:18)1.mU.csoinsg(cid:18)na{OcComsipnu(cid:18)tne|rOg/,ewnehreartee Narmforocfer*FDac.ti1n6gminmt/h|eO?xdirectionwithalever therequiredvectorsandfindthesum {O W 2.59 Findthemomentoftheforceshownon X44 therodaboutpointO. eO(cid:18) r*i; with1(cid:18) D1oand(cid:18)0D45o: y F=20N eO nD0 R problem2.48: 2.3 Cross product, moment, (Filename:pfigure2.vec1.44) 2.49 Write the position vector of point P in and moment about an axis 45o O O 2m termsof(cid:21) and(cid:21) and 1 2 (a) findthey-componentofr*P, 2.56 Findthecrossproductofthetwovectors O x (b) findthecomponentofr* alon(cid:21)O . showninthefiguresbelowfromtheinforma- P 1 tiongiveninthefigures. problem2.59: y P (a) y (b) y (Filename:pfigure2.vec2.2) (cid:18)‘2 (cid:21)O a* 60o *b a* 105o *b 2*.60 Fi*nd the sum of moments of forces 2 2 2 4 3 4 W and T about the origin, given that W D x x 100N;T D120N;‘D4m; and(cid:18) D30o. y ‘ O 1 (cid:21)1 (c) y (d) y T (cid:18)1 x 430o a* 455o 4 a* ‘ /2 ‘ /2 problem2.49: 30o x 45o x W 4 * * (cid:18) (Filename:pfigure2.vec1.45) b b O x 2.50 Whatisthedistancebetweenthepoint problem2.60: A and the diagonal BC of the parallelepiped (e) y (f) y shown? (Usevectormethods.) (Filename:pfigure2.vec2.3) * * b b B 1 3 3 2.61 Findthemomentoftheforce 3 3 A a) aboutpointA C 2 x 2 x 3 2 a* 2 a* b) aboutpointO. 4 F=50N problem2.50: (Filename:pfigure.blue.2.3) (g) y *bD4|O (h) y (cid:11)=30o 2.51LetF* D30N{OC40N|O−10NkO;F* D (-1,2) *b (2,2) 1 2 −20N|OC2NkO; andF*3 D F3x{OCF3y|O− a* F3zkO.Ifthesumofalltheseforcesmustequal a*D x x 1.5m zero,findtherequiredsc*alarequationstosolve 3{OC|O (-1,-1) (2,-1) forthecomponentsofF . 3 problem2.56: O A 2.52Avectorequationforthesumofforces (Filename:pfigure2.vec2.1) 2m resultsintothefollowingequation: problem2.61: 2.57Vectoralgebra.Foreachequationbelow F.{O−p3|O/C R.3{OC6|O/D25N(cid:21)O statewhether: (Filename:pfigure2.vec2.4) 2 5 (a) Theequationisnonsense. Ifso,why? 2.62 Inthefigureshown,OA=AB=2m.The where(cid:21)O D 0:30{O−0:954|O. Findthescalar (b) Isalwaystrue.Why?Giveanexample. forceF D40Nactsperpendiculartothearm * equationsparallelandperpendicularto(cid:21)O. (c) Isnevertrue. Why? Giveanexample. AB.Findthem*omentofF aboutO,giventhat * * * * (cid:18) D45o. IfF alwaysactsnormaltothearm 2*.53*Let (cid:11)F1*C (cid:12)F2 C γF3 D 0, where (d) Issometimestrue.Giveexamplesboth AB,wouldincreasing(cid:18)increasethemagnitude F ;F ; andF areasgiveninProblem2.32. ways. ofthemoment? Inparticular,whatvalueof(cid:18) 1 2 3 Solvefor(cid:11);(cid:12); andγ usingacomputer. Youmayusetrivialexamples. willgivethelargestmoment? 6 CONTENTS y F 2.66 Find the sum of moments due to the %program definition twoweightsoftheteeter-totterwhentheteeter- z(1)=a(1)*b(1); totteristippedatanangle(cid:18) fromitsvertical z(2)=a(2)*b(2); (cid:18) B position.Giveyouranswerintermsofthevari- z(3)=a(3)*b(3); A ‘ ablesshowninthefigure. w=z(1)+z(2)+z(3); A ‘ (cid:11) ‘ (cid:11) 2.73 Findaunitvectornormaltothesurface (cid:18) h ABCDshowninthefigure. O B z x problem2.62: O ‘ A (Filename:pfigure2.vec2.5) D W 2.63 Calculatethemomentofthe2kNpayload B ontherobotarmabout(i)jointA,and(ii)joint C 4" y B,if‘1D0:8m;‘2D0:4m; and‘3D0:1m. 5" y OA=h x 5" C A ‘3 AB=AC=‘ W problem2.73: (Filename:efig1.2.11) 30o ‘ problem2.66: 1 ‘ 2 B C (Filename:pfigure2.vec2.9) 2.74 If the magnitude of a force N* normal 45o 2kN 2th.6e7moFminedntthoefpW*ercaebnotaugtetheerrpoirviontcpoominptuOtinags tworittheeN*surafsacaevAecBtoCr.D(cid:3)inthefigureis1000 N, O x afunctionof(cid:18),iftheweightisassumedtoact z problem2.63: normaltothearmOA(agoodapproximation (Filename:pfigure2.vec2.6) when(cid:18)isverysmall). B A 2.64 Duringaslam-dunk,abasketballplayer ‘ A pullsonthehoopwitha250lbfatpointCofthe O (cid:18) ringasshowninthefigure. Findthemoment 1m C 1m y oftheforceabout W D 1m x a) thepointoftheringattachmenttothe problem2.67: 1m 1m board(pointB),and problem2.74: (Filename:pfigure2.vec2.10) b) therootofthepole,pointO. (Filename:efig1.2.12) 2.68Whatdoyougetwhenyoucrossavector board (cid:3) andascalar? 2.75TheequationofasurfaceisgivenaszD 6" (cid:3) 2x − y. Find a unit vector nO normal to the A 2.69Whydidthechickencrosstheroad? 1.5' surface. 3' basketball hoop B 2.70Carryoutthefollowingcrossproductsin different ways and determine which method 2.76 Inthefigure,atriangularplateACB,at- 10' 15o takestheleastamountoftimeforyou. tachedtorodAB,rotatesaboutthez-axis. At 250lbf a) r*D2:0ft{OC3:0ft|O−1:5ftkOI F*D theinstantshown,theplatemakesanangleof −0:3lbf{O−1:0lbfkOI r*(cid:2)F*D? 60o withthe x-axis. Findanddrawavector normaltothesurfaceACB. O b) r* D .−{OC2:0|O C0:4kO/mI L* D z problem2.64: .3:5|O−2:0kO/kgm=sI r*(cid:2)L*D? B (Filename:pfigure2.vec2.7) c) !* D .{O−1:5|O/rad=sI r*D .10{O− 2.65 Duringweighttraining,anatheletepulls 2|OC3kO/inI !*(cid:2)r*D? 45o C a weight of 500Nwith his arms pulling on a hadlebarconnectedtoauniversalmachineby 45o acable.Findthemomentoftheforceaboutthe 2.71AforceF*D20N|O−5NkOactsthrough A 1m shoulderjointOintheconfigurationshown. apointAwithcoordinates(200 mm,300 mm, y -100mm).WhatisthemomentM*.D r*(cid:2)F*/ x 60o oftheforceabouttheorigin? problem2.76: 2.72CrossProductprogramWriteaprogram (Filename:efig1.2.14) thatwillcalculatecrossproducts.Theinputto thefunctionshouldbethecomponentsofthe twovectorsandtheoutputshouldbethecom- 2.77 Whatisthedistancedbetweentheorigin ponentsofthecrossproduct.Asamodel,here andtheline ABshown? (Youmaywriteyour * * problem2.65: isafunctionfilethatcalculatesdotproductsin solutionintermsofAandBbeforedoingany (cid:3) (Filename:pfigure2.vec2.8) pseudocode. arithmetic). ProblemsforChapter2 7 z * * c) WritebothF1andF2astheproduct c) What are the coordinates of the point (cid:3) 1 A oftheirmagnitudesandunitvectorsin ontheplaneclosesttopointD? (cid:3) theirdirections. O z k (cid:3) * d) WhatistheangleAOB? A 5 |O e) What is the component of F*1 in the 4 {O x-direction? (cid:3) O d 1 f) Whatisr*DO(cid:2)F*1? (r*DO (cid:17) r*O=D (3, 2, 5) B y isthepositionofOrelativetoD.)(cid:3) 1 (0, 7, 4)D B* g) WhatisthemomentofF*2 aboutthe 2 1 axisDC?(Themomentofaforceabout 3 4 B anaxisparalleltotheunitvector(cid:21)O is 5 A C 7 x definedasM(cid:21)D(cid:21)O(cid:1).r*(cid:2)F*/wherer*is x (5, 2, 1) (3, 4, 1) y problem2.77: thepositionofthepointofapplication (Filename:pfigure.blue.1.3) oftheforcerelativetosomepointon problem2.83: the axis. The result does not depend (Filename:pfigure.s95q2) 2.78 What is the perpendicular distance be- onwhichpointontheaxisisusedor tween the point A and the line BC shown? * (Thereareatleast3waystodothisusingvar- whichpointonthelineofactionofF (cid:3) iousvectorproducts,howmanywayscanyou isused.). 2.4 Equivalant force sys- find?) h) Repeatthelastproblemusingeithera y differentreferencepointontheaxisDC tems and couples orthelineofactionOB.Doesthesolu- (cid:3) B A tionagree? [Hint: itshould.] 3 z |O 5m A C B 2.84 Findthenetforceontheparticleshown {O 0 2 3 x inthefigure. F 6N problem2.78: 2 (Filename:pfigure.blue.2.2) 4 2.79Givenaforce,F*1D.−3{OC2|OC5kO/N O F1 3m y |O 3 P 10N actingatapointPwhosepositionisgivenby 4m mr*ePn=tOabDou.t4a{On−ax2i|sOtChro7ukOg/hmt,hewohraitgiisntOhewmioth- x D C {O problem2.81: direction(cid:21)O D p2 |OC p1 |O? 5 5 (Filename:p1sp92) 8N 2.80 Drawing vectors and computing with 2.82 A, B, and C are located by position problem2.84: vxeycztocroso.rdTihneatpeosin.0t;O5;is1t2h/emo.riPgioni.ntPBoinhtaAsxhyazs vr*eCctoDrs.7r*;A8;D9/:.1;2;3/, r*B D .4;5;6/, and (Filename:pfigure2.3.rp1) coordinates.4;5;12/m. a) Usethevectordotproducttofindthe a) MakeaneatsketchofthevectorsOA, angle BAC (Aisatthevertexofthis OB,andAB. angle). b) Find a unit vector in the direction of b) Usethevectorcrossproducttofindthe 2.85 Replace the forces acting on the parti- O cleofmassmshowninthefigurebyasingle OA,callit(cid:21)OA. angle BCA(C isatthevertexofthis equivalentforce. * angle). c) FindtheforceF whichis5Ninsize 2T andisinthedirectionofOA. c) Findaunitvectorperpendiculartothe planeABC. T d) WhatistheanglebetweenOAandOB? e) Whatisr*BO(cid:2)F*? d) HAoBwfrfoamritshethoerigininfi?ni(tTehlainteis,dheofiwnecdlobsye T 45o m 30o f) WhatisthemomentofF*aboutaline is the closest point on this line to the origin?) |O paralleltothezaxisthatgoesthrough thepointB? e) Istheoriginco-planarwiththepoints mg A,B,andC? {O 2.81 Vector Calculations and Geometry. problem2.85: * The 5N fo*rce F1 is along the line OA. The 2.83 PointsA,B,andCinthefiguredefinea (Filename:pfigure2.3.rp2) 7NforceF2isalongthelineOB. plane. a) FindaunitvectorinthedirectionOB. a) Findaunitnormalvectortotheplane. (cid:3) (cid:3) b) FindaunitvectorinthedirectionOA. b) Find the distance from this infinite 2.86 Findthenetforceonthepulleyduetothe (cid:3) (cid:3) planetothepointD. belttensionsshowninthefigure.