ebook img

Introduction to Statics and Dynamics. Problem Book PDF

117 Pages·2001·4.869 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Statics and Dynamics. Problem Book

Introduction to S TATICS and D YNAMICS Problem Book Rudra Pratap and Andy Ruina Spring 2001 (cid:176)c Rudra Pratap and Andy Ruina, 1994-2001. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission of the authors. This book is a pre-release version of a book in progress for Oxford University Press. The following are amongst those who have helped with this book as editors, artists, advisors, or critics: Alexa Barnes, Joseph Burns, Jason Cortell, Ivan Dobrianov, GaborDomokos, ThuDong, GailFish, JohnGibson, SaptarsiHal- dar,DaveHeimstra,TheresaHowley,HerbertHui,MichaelMarder,ElainaMc- Cartney,ArthurOgawa,KalpanaPratap,RichardRand,DaneQuinn,Phoebus Rosakis,LesSchaefier,DavidShipman,JillStartzell,SaskyavanNouhuys,Bill Zobrist. Mike Coleman worked extensively on the text, wrote many of the ex- amples and homework problems and created many of the flgures. David Ho has brought almost all of the artwork to its present state. Some of the home- work problems are modiflcations from the Cornell’s Theoretical and Applied MechanicsarchivesandthusareduetoT&AMfacultyortheirlibrariesinways that we do not know how to give proper attribution. Many unlisted friends, colleagues,relatives,students,andanonymousreviewershavealsomadehelpful suggestions. SoftwareusedtopreparethisbookincludesTeXtures,BLUESKY’simplemen- tation of LaTeX, Adobe Illustrator and MATLAB. Most recent text modiflcations on January 21, 2001. Contents ProblemsforChapter1 : : : : : : : : : : : : : : : : : : : : : : : : : : 0 ProblemsforChapter2 : : : : : : : : : : : : : : : : : : : : : : : : : : 2 ProblemsforChapter3 : : : : : : : : : : : : : : : : : : : : : : : : : : 10 ProblemsforChapter4 : : : : : : : : : : : : : : : : : : : : : : : : : : 15 ProblemsforChapter5 : : : : : : : : : : : : : : : : : : : : : : : : : : 18 ProblemsforChapter6 : : : : : : : : : : : : : : : : : : : : : : : : : : 31 ProblemsforChapter7 : : : : : : : : : : : : : : : : : : : : : : : : : : 41 ProblemsforChapter8 : : : : : : : : : : : : : : : : : : : : : : : : : : 60 ProblemsforChapter9 : : : : : : : : : : : : : : : : : : : : : : : : : : 74 ProblemsforChapter10 : : : : : : : : : : : : : : : : : : : : : : : : : : 83 ProblemsforChapter11 : : : : : : : : : : : : : : : : : : : : : : : : : : 88 ProblemsforChapter12 : : : : : : : : : : : : : : : : : : : : : : : : : : 100 Answersto*’dquestions ProblemsforChapter1 1 Problems for Chapter 1 Introduction to mechanics Because no mathematicalskillshavebeentaughtsofar,the questionsbelowjustdemonstratetheideasand vocabulary you should have gained from the reading. 1.1Whatismechanics? 1.2Brieflydefineeachofthewordsbelow(us- ing rough English, not precise mathematical language): a) Statics, b) Dynamics, c) Kinematics, d) Strengthofmaterials, e) Force, f) Motion, g) Linearmomentum, h) Angularmomentum, i) Arigidbody. 1.3Thischaptersaystherearethree“pillars” ofmechanicsofwhichthethirdis‘Newton’s’ laws,whataretheothertwo? 1.4Thisbookorgainzesthelawsofmechanics into4basiclawsnumberred0-III,notthestan- dard ‘Newton’s three laws’. What are these fourlaws(inEnglish,noequationsneeded)? 1.5Describe,aspreciselyaspossible,aprob- lem that is not mentionned in the book but which is a mechanics problem. State which quantities are given and what is to be deter- minedbythemechanicssolution. 1.6Describeanengineeringproblemwhichis notamechanicsproblem. 1.7AbouthowoldareNewton’slaws? 1.8 Relativity and quantum mechanics have overthrownNewton’slaws.Whyareengineers stillusingthem? 1.9Computationispartofmodernengineering. a) What are the three primary computer skillsyouwillneedfordoingproblems inthisbook? b) Giveexamplesofeach(differentthatn theexamplesgiven). c) (optional)Doanexampleofeachona computer. 2 CONTENTS Problems for Chapter 2 Vectorskillsformechanics B r*BC C b2e.1lo1w,Fofirndthetheunsitcavleacrstor(cid:11)s (cid:21)aO1ndan(cid:12)d (cid:21)sO2ucshhotwhant (cid:11)(cid:21)O −3(cid:21)O D(cid:12)|O. r* 2 2 y CD 2.1Vectornotationandvec- tor addition r*AB (cid:21)O2 D 1 O k 60o t2h.1reReedpifrfeesreenntttwheayvse.ctorr*D5m{O−2m|Oin A |O 1 (cid:21)O1 x problem2.5: problem2.11: (Filename:pfigure2.vec1.5) (Filename:pfigure2.vec1.11) 2.2Whichoneofthefollowingrepresentations p ofthesamevectorF*iswrongandwhy? 2m.6DTh5ekgforacreessahcotwinngionnthaebfilogcukreo,fwmhearses 2.12 Inthefigureshown,T1D20 2N;T2D a) b) 40N,andW issuchthatthesumofthethree F1 D20*N; F2*D50*N,and*W Dmg. Find forcesequalszero.IfWisdoubled,find(cid:11)and |O 2N thesumF .DF1CF2CW*/? (cid:12)suchthat(cid:11)T*1;(cid:12)T*2,and2W* stillsumupto 3N -3N{OC2N|O F*1 F2 zero. y {O 4 3 c) d) p T p 13N 3 4 2 T1 13N 2 2 3 60o 45o 3 x problem2.2: * W (Filename:pfigure2.vec1.2) problem2.6: (Filename:pfigure2.vec1.6) 2.3 Thereareexactlytworepresentationsthat W 2.7 Three position vectors are shown in the dtuersecsr.ibMeatthcehstahmeecovrercetcotrpiincttuhreesfoinlltoowpianigrsp.ic- fipgure below. Given that r*B=A D 3m.12{OC problem2.12: (Filename:pfigure2.vec1.12) a) 4N b) 4N 23|O/andr*C=BD1m{O−2m|O,findr*A=C. |O B 2.13Inthefigureshown,rodsABandBCare each 4 cm long and lie along y and x axes, 30o 30o respectively. RodCDisinthe xz planeand {O |O makesanangle(cid:18) D30owiththex-axis. c) d) (a) Findr* intermsofthevariablelength AD 2N p {O ‘. p 2N(-{OC 3|O) (b) Find‘and(cid:11)suchthat 2 3N r* D r* −r* C(cid:11)kO: C AD AB BC e) f) z A 3N{OC1N|O 3N(13{OC|O) problem2.7: D problem2.3: (Filename:pfigure2.vec1.7) ‘ (Filename:pfigure2.vec1.3) 2.8GiventhatthesumoffourvectorsF*;i D A 4cm B * i* y 22.N4|OF;inF*d tDhe3su0mN.opf1f{OorCcesp1F*|1O/;Dan2d0FN*{O −D −15to0N4|,O;isF*3zeDro,10wNh.e−re{OFC1|OD/,fi2n0dNF*{O4;.F2 D 30o 4cm −20N.−2{OCp3|O/. 2 2 3 2.9 Three forces F* D 2*N{O −5N|O;R* D prxoblem2.13:C 10N.cos(cid:18){OCsin(cid:18)|O/andW D−20N|O,sum (Filename:pfigure2.vec1.13) uptozero.Determinetheangle(cid:18)anddrawthe 2vrr**e.C5cDto.IDrns 2tahrfeet.fi|r*OAgCuBrekOD/s.h3oFwfitnnkOd;btr*ehBleoCwpo,Dstiht2ieofnpt|oOvs,eictaitnoodnr f32o:.12rc0NeG{Ovie−vcetn0o:rt4hR*Nat|cRO*l,1efiaDnrldy12sNRh*o{OwCCi1n5:g5R*iNts.|OdiarnecdtiRo*2n.D tm32h0.1eaNg4tn{wOFi−toiun4ddf0eostNrh.ce|eOsma,nardgepFn*ri2teusDdeen3sti0nogNft{OthhCee4mf0orNwce|iOst.hFD*t1hraeDwir AD 1 2 ProblemsforChapter2 3 * 2.15 Two forces R D 2N.0:16{O C 2.21 A1m(cid:2)1msquareboardissupported 2.24 Acirculardiskofradius6inismounted * 0:80|O/andW D −36N|O act on a particle. bytwostringsAEandBF.Thetensioninthe onaxlex-xattheendanL-shapedbarasshown Findthemagnitudeofthenetforce. Whatis string BF is 20N. Express this tension as a inthefigure. Thediskistipped45owiththe thedirectionofthisforce? vector. horizontal bar AC. Two points, P and Q, are y markedontherimoftheplate;Pdirectlypar- 2.16InProblem2.13,find‘suchthatthelength 2.5m alleltothecenterCintothepage,andQatthe ofthepositionvectorr* is6cm. highest point above the center C. Taking the AD F basevectors{O;|O,andkOasshowninthefigure, 2oF.f21F7D*23−In00Ft*hN1e..fiFginyudrethsehmowagnn,itFu1deDand10d0irNectainodn E 1 12m 2m find((ba)) tthheemrelaagtniviteupdoesjir*tiQo=nPvj.ectorr*Q=P, 1m F*2-F*1 A B kO |O Q C P F F2 plate 1m {O Q 6" 1 45o D 45o 30o D C x A C x problem2.21: 6" problem2.17: (Filename:pfigure2.vec1.21) 12" D (Filename:pfigure2.vec1.17) O 2.22 ThetopofanL-shapedbar,showninthe * * figure,istobetiedbystringsADandBDto x x 2.18 LettwoforcesP andQactinthedirec- thepointsAandBinthe yz plane. Findthe problem2.24: tionshowninthefigure. Youareallowedto lengthofthestringsADandBDusingvectors (Filename:pfigure2.vec1.24) changethedirectionoftheforcesbychanging r* andr* . theangles(cid:11) and(cid:18) whilekeepingthemagni- AD BD itudesfixed. Whatshouldbethevaluesof(cid:11) B 2.25 Findtheunitvector(cid:21)O ,directedfrom * * AB and(cid:18)ifthemagnitudeofPCQhastobethe pointAtopointBshowninthefigure. maximum? y y y 2m 3m B Q 1m A 2m P (cid:11) (cid:18) 1m x 1m problem2.18: x (Filename:pfigure2.vec1.18) A problem2.25: (Filename:pfigure2.vec1.25) 2.19TwopointsAandBarelocatedinthexy plane. ThecoordinatesofAandBare(4mm, 8mm)and(90mm,6mm),respectively. 30o x 2.26 FindaunitvectoralongstringBAand (a) Drawpositionvectorsr* andr*. expressthepositionvectorofAwithrespectto (b) Findthemagnitudeofr*A andr*B. z B,r*A=B,intermsoftheunitvector. A B problem2.22: y (c) HowfarisAfromB? (Filename:pfigure2.vec1.22) 1.5m 2.23 Acubeofside6inisshowninthefigure. 2.20 Inthefigureshown,aballissuspended (a) FindthepositionvectorofpointF,r*, A wit(haa)0F.8inmdlothnegpcoosridtifornomveac2tomrlr*oBngofhtohiestbOaAll.. fr*rFo=mc:thevectorsumr*FD r*DCr*C=DCF 2.5m (b) Findthedistanceoftheballfromthe (b) Calculatejr*j. 1m x origin. F 3m y A (c) Findr*Gusingr*F. B z y z problem2.26: 0.8m E F m (Filename:pfigure2.vec1.26) 2 D C B H G 2.27 Inthestructureshowninthefigure,‘D 45o 2ft;hD1:5ft.TheforceinthespringisF*D kr* ,wherekD100lbf=ft.Findaunitvector O x A B x O AB problem2.20: (Filename:pfigure2.vec1.20) problem2.23: (Filename:pfigure2.vec1.23) (cid:21)F*ABDaFlo(cid:21)nOAgBA.B and calculate the spring force 4 CONTENTS y * 2.34FindthedotproductoftwovectorsF D 2.43 Usethedotproducttoshow‘thelawof C 10lbf{O−20lbf|Oand(cid:21)O D0:8{OC0:6|O.Sketch cosines’;i. e., * O F and(cid:21)andshowwhattheirdotproductrep- c2Da2Cb2C2abcos(cid:18): B resents. (Hint: *c =a*+*b;also,*c(cid:1)*c D*c(cid:1)*c) 2.35ThepositionvectorofapointAis r* D A 30o 30cm{O. Findthedotproductof r* with(cid:21)O D b p A ‘ c h 3{OC 1|O. 2 2 (cid:18) O x 2.36Fromthefigurebelow,findthecomponent problem2.27: offorceF*inthedirectionof(cid:21)O. a y (Filename:pfigure2.vec1.27) problem2.43: 2.28Expressthevectorr* D2m{O−3m|OC (Filename:pfigure.blue.2.1) 5inmdikcOaitnintegrimtssdoifreitcstmioang.niAtudeandaunitvector (cid:21)O F=100N 32:.454in|(Oa−) 4D:r9a5winktOh.e(bv)eFctionrdtrh*eaDngle3:t5hiisnv{OeCc- 30o 10o tormakeswiththez-axis. (c)Findtheangle 2.29 Let F* D 10lbf{OC30lbf|O and W* D x thisvectormakeswiththex-yplane. problem2.36: −20lbf|O.Findaunitvectorinthedirectionof 2.45 Inthefigureshown,(cid:21)O andnOareunitvec- * * (Filename:pfigure2.vec1.33) thenetforceF CW,andexpressthethenet tors parallel and perpendicular to the surface forceintermsoftheunitvector. 2.37 Find the angle between F* D 2N{O C AB,respectively. AforceW* D−50N|Oacts * 1 * 5N|OandF D−2N{OC6N|O. ontheblock.FindthecomponentsofWalong 2.30Let(cid:21)O1D0:80{OC0:60|Oand(cid:21)O2D0:5{OC 2 (cid:21)O andnO. 0:866|O. 2.38AforceF*isdirectedfrompointA(3,2,0) A (a) Showthat(cid:21)O and(cid:21)O areunitvectors. topointB(0,2,4). Ifthe x-componentofthe nO 1 2 forceis120 N,findthe y-andz-components |O (b) Isthesumofthesetwounitvectorsalso ofF*. (cid:21)O aunitvector? Ifnot, thenfindaunit vectoralongthesumof(cid:21)O1and(cid:21)O2. a2s.3F9*ADfo−rc2e0alcbtfi{nOgCo2n2albbfe|aOdCof1m2labsfskOm.Wisghiavteins {O O W 30o B 2.31IfamassslidesfrompointAtowardspoint theanglebetweentheforceandthez-axis? problem2.45: BpoainlotsngAaanstdraBigahrtep(a0thina,n5dinth,e0cino)oradnidna(t1e0sionf, 2.40Given!*D2rad=s{OC*3rad=s|O; H*1 D 2.46 Fromthefigureshow(Finle,nafimned:pfithguerec2.ovemc1p.4o1-) 0(cid:21)OAinB, d1i0reinc)te,drefsropmectAivetolyB, fianlodngthteheunpiatthv.ector .62kO0/{OkCg3m02|O=/sk,gfimnd2(=as)athnedaHng2leDbe.t1w0e{OeCn1!*5|aOnCd pnoensittsioonfvveeccttoorr)r*aAloBn(gyouhavetofirstfindthis * H*1and(b)theanglebetween!*andH*2. (a) they-axis,and 120.3N2kWO;rFi*t2ethDeve−c2to0rNsF|O1CD23N0NkO{;OCan4d0F*N3|O−D 2nO.4D1T0:h7e4{uOnCit0n:o6r7m|Oa.lItfothaesuwrefaigchetiosfgaivbelnocaks (b) alongz(cid:21)O. −10N{O−100NkO asalistofnumbers(rows onthissurfaceactsinthe−|O direction, find orcolumns). Findthesumoftheforcesusing theanglethata1000 Nnormalforcemakes 2m acomputer. withthedirectionofweightoftheblock. A 2.42Vectoralgebra.Foreachequationbelow B 2.2 The dot product of two statewhether: 2m 1m 3m vectors (a) Theequationisnonsense. Ifso,why? 30o y (b) Isalwaystrue.Why?Giveanexample. O (cid:21) (c) Isnevertrue. Why? Giveanexample. 2.33 ExpresstheunitvectorsnOand(cid:21)O interms x of{Oand|Oshowninthefigure.Whatarethex (d) Issometimestrue.Giveexamplesboth problem2.46: ways. andycomponentsofr*D3:0ftnO−1:5ft(cid:21)O?(cid:3) (Filename:pfigure2.vec1.42) Youmayusetrivialexamples. * * * * * 2.47ThenetforceactingonaparticleisF D y a) ACB DBCA 2N{OC10N|O. Find the components of this (cid:21)O nO b) A**C*bDb*CA** fsoisrcveecintorasn{oO0thDer−cocoorsdi(cid:18)n{OatCe ssyinst(cid:18)e|mOawndith|O0bDa- |O (cid:18) c) A(cid:1)B DB(cid:1)A −sin(cid:18){O−cos(cid:18)|O. For(cid:18) D 30o, sketchthe * d) B*=C*DB=C vectorF andshowitscomponentsinthetwo coordinatesystems. {O x e) b=A*Db=A problem2.33: * * * * * * * * * * 2.48 FindtheunitvectorseORandeO(cid:18) interms (Filename:efig1.2.27) f) AD.A(cid:1)B/BC.A(cid:1)C/CC.A(cid:1)D/D of{Oand|Owiththegeometryshowninfigure. ProblemsforChapter2 5 * * * * * WhatarethecomponetsofW alongeO and 2.54 Write a computer program (or use a a) B(cid:2)CDC(cid:2)B R eO(cid:18)? canned program) to find the dot product of b) B*(cid:2)C*DC*(cid:1)B* two 3-D vectors. Test the program by com- putingthedotproducts{O(cid:1){O;{O(cid:1)|O; and|O(cid:1)kO. c) C*(cid:1).A*(cid:2)B*/DB*(cid:1).C*(cid:2)A*/ Nowusetheprogramtofindthecomponents * * * * * * * * * of F* D .2{O C2|O −3kO/N along the line d) A(cid:2).B(cid:2)C/D.A(cid:1)C/B−.A(cid:1)B/C (cid:18) ‘ r* D.0:5{O−0:2|OC0:1kO/m. * AB 2.58WhatisthemomentMproducedbya20 |O (cid:18)2n.55DL(cid:18)e0t−r*nnD1(cid:18)1.mU.csoinsg(cid:18)na{OcComsipnu(cid:18)tne|rOg/,ewnehreartee Narmforocfer*FDac.ti1n6gminmt/h|eO?xdirectionwithalever therequiredvectorsandfindthesum {O W 2.59 Findthemomentoftheforceshownon X44 therodaboutpointO. eO(cid:18) r*i; with1(cid:18) D1oand(cid:18)0D45o: y F=20N eO nD0 R problem2.48: 2.3 Cross product, moment, (Filename:pfigure2.vec1.44) 2.49 Write the position vector of point P in and moment about an axis 45o O O 2m termsof(cid:21) and(cid:21) and 1 2 (a) findthey-componentofr*P, 2.56 Findthecrossproductofthetwovectors O x (b) findthecomponentofr* alon(cid:21)O . showninthefiguresbelowfromtheinforma- P 1 tiongiveninthefigures. problem2.59: y P (a) y (b) y (Filename:pfigure2.vec2.2) (cid:18)‘2 (cid:21)O a* 60o *b a* 105o *b 2*.60 Fi*nd the sum of moments of forces 2 2 2 4 3 4 W and T about the origin, given that W D x x 100N;T D120N;‘D4m; and(cid:18) D30o. y ‘ O 1 (cid:21)1 (c) y (d) y T (cid:18)1 x 430o a* 455o 4 a* ‘ /2 ‘ /2 problem2.49: 30o x 45o x W 4 * * (cid:18) (Filename:pfigure2.vec1.45) b b O x 2.50 Whatisthedistancebetweenthepoint problem2.60: A and the diagonal BC of the parallelepiped (e) y (f) y shown? (Usevectormethods.) (Filename:pfigure2.vec2.3) * * b b B 1 3 3 2.61 Findthemomentoftheforce 3 3 A a) aboutpointA C 2 x 2 x 3 2 a* 2 a* b) aboutpointO. 4 F=50N problem2.50: (Filename:pfigure.blue.2.3) (g) y *bD4|O (h) y (cid:11)=30o 2.51LetF* D30N{OC40N|O−10NkO;F* D (-1,2) *b (2,2) 1 2 −20N|OC2NkO; andF*3 D F3x{OCF3y|O− a* F3zkO.Ifthesumofalltheseforcesmustequal a*D x x 1.5m zero,findtherequiredsc*alarequationstosolve 3{OC|O (-1,-1) (2,-1) forthecomponentsofF . 3 problem2.56: O A 2.52Avectorequationforthesumofforces (Filename:pfigure2.vec2.1) 2m resultsintothefollowingequation: problem2.61: 2.57Vectoralgebra.Foreachequationbelow F.{O−p3|O/C R.3{OC6|O/D25N(cid:21)O statewhether: (Filename:pfigure2.vec2.4) 2 5 (a) Theequationisnonsense. Ifso,why? 2.62 Inthefigureshown,OA=AB=2m.The where(cid:21)O D 0:30{O−0:954|O. Findthescalar (b) Isalwaystrue.Why?Giveanexample. forceF D40Nactsperpendiculartothearm * equationsparallelandperpendicularto(cid:21)O. (c) Isnevertrue. Why? Giveanexample. AB.Findthem*omentofF aboutO,giventhat * * * * (cid:18) D45o. IfF alwaysactsnormaltothearm 2*.53*Let (cid:11)F1*C (cid:12)F2 C γF3 D 0, where (d) Issometimestrue.Giveexamplesboth AB,wouldincreasing(cid:18)increasethemagnitude F ;F ; andF areasgiveninProblem2.32. ways. ofthemoment? Inparticular,whatvalueof(cid:18) 1 2 3 Solvefor(cid:11);(cid:12); andγ usingacomputer. Youmayusetrivialexamples. willgivethelargestmoment? 6 CONTENTS y F 2.66 Find the sum of moments due to the %program definition twoweightsoftheteeter-totterwhentheteeter- z(1)=a(1)*b(1); totteristippedatanangle(cid:18) fromitsvertical z(2)=a(2)*b(2); (cid:18) B position.Giveyouranswerintermsofthevari- z(3)=a(3)*b(3); A ‘ ablesshowninthefigure. w=z(1)+z(2)+z(3); A ‘ (cid:11) ‘ (cid:11) 2.73 Findaunitvectornormaltothesurface (cid:18) h ABCDshowninthefigure. O B z x problem2.62: O ‘ A (Filename:pfigure2.vec2.5) D W 2.63 Calculatethemomentofthe2kNpayload B ontherobotarmabout(i)jointA,and(ii)joint C 4" y B,if‘1D0:8m;‘2D0:4m; and‘3D0:1m. 5" y OA=h x 5" C A ‘3 AB=AC=‘ W problem2.73: (Filename:efig1.2.11) 30o ‘ problem2.66: 1 ‘ 2 B C (Filename:pfigure2.vec2.9) 2.74 If the magnitude of a force N* normal 45o 2kN 2th.6e7moFminedntthoefpW*ercaebnotaugtetheerrpoirviontcpoominptuOtinags tworittheeN*surafsacaevAecBtoCr.D(cid:3)inthefigureis1000 N, O x afunctionof(cid:18),iftheweightisassumedtoact z problem2.63: normaltothearmOA(agoodapproximation (Filename:pfigure2.vec2.6) when(cid:18)isverysmall). B A 2.64 Duringaslam-dunk,abasketballplayer ‘ A pullsonthehoopwitha250lbfatpointCofthe O (cid:18) ringasshowninthefigure. Findthemoment 1m C 1m y oftheforceabout W D 1m x a) thepointoftheringattachmenttothe problem2.67: 1m 1m board(pointB),and problem2.74: (Filename:pfigure2.vec2.10) b) therootofthepole,pointO. (Filename:efig1.2.12) 2.68Whatdoyougetwhenyoucrossavector board (cid:3) andascalar? 2.75TheequationofasurfaceisgivenaszD 6" (cid:3) 2x − y. Find a unit vector nO normal to the A 2.69Whydidthechickencrosstheroad? 1.5' surface. 3' basketball hoop B 2.70Carryoutthefollowingcrossproductsin different ways and determine which method 2.76 Inthefigure,atriangularplateACB,at- 10' 15o takestheleastamountoftimeforyou. tachedtorodAB,rotatesaboutthez-axis. At 250lbf a) r*D2:0ft{OC3:0ft|O−1:5ftkOI F*D theinstantshown,theplatemakesanangleof −0:3lbf{O−1:0lbfkOI r*(cid:2)F*D? 60o withthe x-axis. Findanddrawavector normaltothesurfaceACB. O b) r* D .−{OC2:0|O C0:4kO/mI L* D z problem2.64: .3:5|O−2:0kO/kgm=sI r*(cid:2)L*D? B (Filename:pfigure2.vec2.7) c) !* D .{O−1:5|O/rad=sI r*D .10{O− 2.65 Duringweighttraining,anatheletepulls 2|OC3kO/inI !*(cid:2)r*D? 45o C a weight of 500Nwith his arms pulling on a hadlebarconnectedtoauniversalmachineby 45o acable.Findthemomentoftheforceaboutthe 2.71AforceF*D20N|O−5NkOactsthrough A 1m shoulderjointOintheconfigurationshown. apointAwithcoordinates(200 mm,300 mm, y -100mm).WhatisthemomentM*.D r*(cid:2)F*/ x 60o oftheforceabouttheorigin? problem2.76: 2.72CrossProductprogramWriteaprogram (Filename:efig1.2.14) thatwillcalculatecrossproducts.Theinputto thefunctionshouldbethecomponentsofthe twovectorsandtheoutputshouldbethecom- 2.77 Whatisthedistancedbetweentheorigin ponentsofthecrossproduct.Asamodel,here andtheline ABshown? (Youmaywriteyour * * problem2.65: isafunctionfilethatcalculatesdotproductsin solutionintermsofAandBbeforedoingany (cid:3) (Filename:pfigure2.vec2.8) pseudocode. arithmetic). ProblemsforChapter2 7 z * * c) WritebothF1andF2astheproduct c) What are the coordinates of the point (cid:3) 1 A oftheirmagnitudesandunitvectorsin ontheplaneclosesttopointD? (cid:3) theirdirections. O z k (cid:3) * d) WhatistheangleAOB? A 5 |O e) What is the component of F*1 in the 4 {O x-direction? (cid:3) O d 1 f) Whatisr*DO(cid:2)F*1? (r*DO (cid:17) r*O=D (3, 2, 5) B y isthepositionofOrelativetoD.)(cid:3) 1 (0, 7, 4)D B* g) WhatisthemomentofF*2 aboutthe 2 1 axisDC?(Themomentofaforceabout 3 4 B anaxisparalleltotheunitvector(cid:21)O is 5 A C 7 x definedasM(cid:21)D(cid:21)O(cid:1).r*(cid:2)F*/wherer*is x (5, 2, 1) (3, 4, 1) y problem2.77: thepositionofthepointofapplication (Filename:pfigure.blue.1.3) oftheforcerelativetosomepointon problem2.83: the axis. The result does not depend (Filename:pfigure.s95q2) 2.78 What is the perpendicular distance be- onwhichpointontheaxisisusedor tween the point A and the line BC shown? * (Thereareatleast3waystodothisusingvar- whichpointonthelineofactionofF (cid:3) iousvectorproducts,howmanywayscanyou isused.). 2.4 Equivalant force sys- find?) h) Repeatthelastproblemusingeithera y differentreferencepointontheaxisDC tems and couples orthelineofactionOB.Doesthesolu- (cid:3) B A tionagree? [Hint: itshould.] 3 z |O 5m A C B 2.84 Findthenetforceontheparticleshown {O 0 2 3 x inthefigure. F 6N problem2.78: 2 (Filename:pfigure.blue.2.2) 4 2.79Givenaforce,F*1D.−3{OC2|OC5kO/N O F1 3m y |O 3 P 10N actingatapointPwhosepositionisgivenby 4m mr*ePn=tOabDou.t4a{On−ax2i|sOtChro7ukOg/hmt,hewohraitgiisntOhewmioth- x D C {O problem2.81: direction(cid:21)O D p2 |OC p1 |O? 5 5 (Filename:p1sp92) 8N 2.80 Drawing vectors and computing with 2.82 A, B, and C are located by position problem2.84: vxeycztocroso.rdTihneatpeosin.0t;O5;is1t2h/emo.riPgioni.ntPBoinhtaAsxhyazs vr*eCctoDrs.7r*;A8;D9/:.1;2;3/, r*B D .4;5;6/, and (Filename:pfigure2.3.rp1) coordinates.4;5;12/m. a) Usethevectordotproducttofindthe a) MakeaneatsketchofthevectorsOA, angle BAC (Aisatthevertexofthis OB,andAB. angle). b) Find a unit vector in the direction of b) Usethevectorcrossproducttofindthe 2.85 Replace the forces acting on the parti- O cleofmassmshowninthefigurebyasingle OA,callit(cid:21)OA. angle BCA(C isatthevertexofthis equivalentforce. * angle). c) FindtheforceF whichis5Ninsize 2T andisinthedirectionofOA. c) Findaunitvectorperpendiculartothe planeABC. T d) WhatistheanglebetweenOAandOB? e) Whatisr*BO(cid:2)F*? d) HAoBwfrfoamritshethoerigininfi?ni(tTehlainteis,dheofiwnecdlobsye T 45o m 30o f) WhatisthemomentofF*aboutaline is the closest point on this line to the origin?) |O paralleltothezaxisthatgoesthrough thepointB? e) Istheoriginco-planarwiththepoints mg A,B,andC? {O 2.81 Vector Calculations and Geometry. problem2.85: * The 5N fo*rce F1 is along the line OA. The 2.83 PointsA,B,andCinthefiguredefinea (Filename:pfigure2.3.rp2) 7NforceF2isalongthelineOB. plane. a) FindaunitvectorinthedirectionOB. a) Findaunitnormalvectortotheplane. (cid:3) (cid:3) b) FindaunitvectorinthedirectionOA. b) Find the distance from this infinite 2.86 Findthenetforceonthepulleyduetothe (cid:3) (cid:3) planetothepointD. belttensionsshowninthefigure.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.