ebook img

Introduction to robust estimation and hypothesis testing PDF

609 Pages·2005·2.62 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to robust estimation and hypothesis testing

Introduction to Robust Estimation and Hypothesis Testing Second Edition Rand R. Wilcox Department of Psychology University of Southern California AMSTERDAM • BOSTON (cid:127) HEIDELBERG (cid:127) LONDON NEWYORK (cid:127) OXFORD (cid:127) PARIS (cid:127) SANDIEGO SANFRANCISCO (cid:127) SINGAPORE (cid:127) SYDNEY (cid:127) TOKYO AcquisitionEditor BarbaraA.Holland AssociateAcquisitionEditor TomSinger SeniorProjectManager AngelaG.Dooley MarketingManager PhilipPritchard CoverDesign RichardHannus CoverImage Superstock Composition CEPHA CoverPrinter PhoenixColor,Inc. InteriorPrinter TheMaple-VailBookManufacturingGroup,Inc. ElsevierAcademicPress 30CorporateDrive,Suite400,Burlington,MA01803,USA 525BStreet,Suite1900,SanDiego,CA92101-4495,USA 84Theobald’sRoad,LondonWC1X8RR,UK Thisbookisprintedonacid-freepaper. Copyright©2005,ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopy,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRights DepartmentinOxford,UK:phone:(+44)1865843830,fax:(+44)1865853333, e-mail:[email protected] viatheElsevierhomepage(http://elsevier.com),byselecting“CustomerSupport” andthen“ObtainingPermissions.” LibraryofCongressCataloging-in-PublicationData Applicationsubmitted BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:0-12-751542-9 ForallinformationonallElsevierAcademicPressPublications visitourWebsiteatwww.books.elsevier.com PrintedintheUnitedStatesofAmerica 04 05 06 07 08 09 9 8 7 6 5 4 3 2 1 Contents Preface................................................................. xvii Chapter1 Introduction .............................................. 1 1.1 ProblemswithAssumingNormality................................ 2 1.2 Transformations.................................................... 6 1.3 TheInfluenceCurve................................................ 7 1.4 TheCentralLimitTheorem......................................... 8 1.5 IstheANOVAFRobust?........................................... 9 1.6 Regression.......................................................... 10 1.7 MoreRemarks...................................................... 10 1.8 UsingtheComputer:RandS-PLUS................................. 11 1.9 SomeData-ManagmentIssues...................................... 13 1.9.1 EliminatingMissingValues................................ 17 Chapter2 AFoundationforRobustMethods........................ 19 2.1 BasicToolsforJudgingRobustness................................. 20 2.1.1 QualitativeRobustness.................................... 21 2.1.2 InfinitesimalRobustness................................... 23 2.1.3 QuantitativeRobustness................................... 25 2.2 SomeMeasuresofLocationandTheirInfluenceFunction........... 26 2.2.1 Quantiles.................................................. 26 2.2.2 TheWinsorizedMean..................................... 27 iii iv Contents 2.2.3 TheTrimmedMean....................................... 29 2.2.4 M-MeasuresofLocation................................... 30 2.2.5 R-MeasuresofLocation.................................... 33 2.3 MeasuresofScale................................................... 33 2.3.1 MeanDeviationfromtheMean............................ 34 2.3.2 MeanDeviationfromtheMedian.......................... 35 2.3.3 MedianAbsoluteDeviation................................ 35 2.3.4 Theq-QuantileRange...................................... 35 2.3.5 TheWinsorizedVariance.................................. 36 2.4 Scale-EquivariantM-MeasuresofLocation.......................... 36 2.5 WinsorizedExpectedValues........................................ 38 Chapter3 EstimatingMeasuresofLocationandScale .............. 43 3.1 ABootstrapEstimateofaStandardError........................... 44 3.1.1 RandS-PLUSFunctionbootse............................ 46 3.2 DensityEstimators................................................. 47 3.2.1 NormalKernel............................................ 47 3.2.2 Rosenblatt’sShiftedHistogram............................ 48 3.2.3 TheExpectedFrequencyCurve............................ 48 3.2.4 AnAdaptiveKernelEstimator............................. 49 3.2.5 RandS-PLUSFunctionsskerd,kerden,kdplot,rdplot, akerd,andsplot.......................................... 50 3.3 TheSampleTrimmedMean......................................... 56 3.3.1 RandS-PLUSFunctiontmean............................. 59 3.3.2 EstimatingtheStandardErroroftheTrimmedMean....... 59 3.3.3 RandS-PLUSFunctionswin,winvar,andtrimse.......... 64 3.3.4 EstimatingtheStandardErroroftheSampleMedian,M... 64 3.3.5 RandS-PLUSFunctionmsmedse........................... 65 3.4 TheFinite-SampleBreakdownPoint................................ 65 3.5 EstimatingQuantiles............................................... 66 3.5.1 EstimatingtheStandardErroroftheSampleQuantile...... 67 3.5.2 RandS-PLUSFunctionqse................................ 69 3.5.3 TheMaritz–JarrettEstimateoftheStandardErrorofxˆq..... 69 Contents v 3.5.4 RandS-PLUSFunctionmjse.............................. 70 3.5.5 TheHarrell–DavisEstimator............................... 71 3.5.6 RandS-PLUSFunctionhd................................. 72 ˆ 3.5.7 ABootstrapEstimateoftheStandardErrorofθ ........... 72 q 3.5.8 RandS-PLUSFunctionhdseb............................. 72 3.6 AnM-EstimatorofLocation........................................ 73 3.6.1 ComputinganM-EstimatorofLocation.................... 79 3.6.2 RandS-PLUSFunctionmest.............................. 81 3.6.3 EstimatingtheStandardErroroftheM-Estimator.......... 81 3.6.4 RandS-PLUSFunctionmestse............................ 84 3.6.5 ABootstrapEstimateoftheStandardErrorofµˆm.......... 84 3.6.6 RandS-PLUSFunctionmestseb........................... 85 3.7 One-StepM-Estimator.............................................. 85 3.7.1 RandS-PLUSFunctiononestep........................... 86 3.8 W-Estimators....................................................... 87 3.9 TheHodges–LehmannEstimator................................... 88 3.10 SkippedEstimators................................................. 88 3.10.1 RandS-PLUSFunctionsmomandbmean.................... 89 3.11 SomeComparisonsoftheLocationEstimators...................... 90 3.12 MoreMeasuresofScale............................................. 92 3.12.1 TheBiweightMidvariance................................. 93 3.12.2 RandS-PLUSFunctionbivar............................. 96 3.12.3 ThePercentageBendMidvariance......................... 96 3.12.4 RandS-PLUSFunctionpbvar............................. 98 3.12.5 TheInterquartileRange.................................... 98 3.12.6 RandS-PLUSFunctionidealf............................ 99 3.13 SomeOutlierDetectionMethods.................................... 99 3.13.1 RulesBasedonMeansandVariances...................... 99 3.13.2 AMethodBasedontheInterquartileRange................ 100 3.13.3 Carling’sModification..................................... 100 3.13.4 AMAD-MedianRule...................................... 101 3.13.5 RandS-PLUSFunctionsoutboxandout................... 101 3.14 Exercises........................................................... 102 vi Contents Chapter4 ConfidenceIntervalsintheOne-SampleCase ........... 105 4.1 ProblemsWhenWorkingwithMeans............................... 105 4.2 Theg-and-hDistribution........................................... 110 4.3 InferencesAbouttheTrimmedMean............................... 113 4.3.1 RandS-PLUSFunctiontrimci............................ 117 4.4 BasicBootstrapMethods............................................ 117 4.4.1 ThePercentileBootstrapMethod.......................... 118 4.4.2 RandS-PLUSFunctiononesampb.......................... 119 4.4.3 Bootstrap-tMethod........................................ 119 4.4.4 BootstrapMethodsWhenUsingaTrimmedMean......... 121 4.4.5 Singh’sModification....................................... 125 4.4.6 RandS-PLUSFunctionstrimpbandtrimcibt............. 126 4.5 InferencesAboutM-Estimators..................................... 127 4.5.1 RandS-PLUSFunctionsmestciandmomci................ 129 4.6 ConfidenceIntervalsforQuantiles.................................. 130 4.6.1 AlteranativeMethodfortheMedian....................... 132 4.6.2 RandS-PLUSFunctionsqmjci,hdci,sint, qci,andqint.............................................. 133 4.7 ConcludingRemarks............................................... 134 4.8 Exercises........................................................... 135 Chapter5 ComparingTwoGroups.................................. 137 5.1 TheShiftFunction.................................................. 139 5.1.1 TheKolmogorov–SmirnovTest............................ 142 5.1.2 RandS-PLUSFunctionsks,kssig,kswsig, andkstiesig.............................................. 145 5.1.3 TheSBandandWBandfortheShiftFunction............. 147 5.1.4 RandS-PLUSFunctionssbandandwband................. 148 5.1.5 ConfidenceBandfortheDecilesOnly...................... 151 5.1.6 RandS-PLUSFunctionshifthd........................... 153 5.1.7 RandS-PLUSFunctionsg2plotandsplotg2.............. 155 5.2 Student’stTest..................................................... 155 Contents vii 5.3 TheYuen–WelchTest............................................... 159 5.3.1 RandS-PLUSFunctionyuen.............................. 161 5.3.2 ABootstrap-tMethodforComparingTrimmedMeans..... 162 5.3.3 S-PLUSFunctionyuenbt................................... 165 5.4 InferencesBasedonaPercentileBootstrapMethod.................. 167 5.4.1 ComparingM-Estimators.................................. 168 5.4.2 ComparingTrimmedMeans............................... 169 5.4.3 RandS-PLUSFunctionstrimpb2,pb2gen,andm2ci....... 169 5.5 ComparingMeasuresofScale....................................... 170 5.5.1 ComparingVariances...................................... 170 5.5.2 RandS-PLUSFunctioncomvar2........................... 171 5.5.3 ComparingBiweightMidvariances........................ 171 5.5.4 RandS-PLUSFunctionb2ci.............................. 171 5.6 PermutationTests.................................................. 172 5.6.1 RandS-PLUSFunctionpermg............................. 173 5.7 SomeHeteroscedastic,Rank-BasedMethods........................ 173 5.7.1 RandS-PLUSFunctionmee................................ 174 5.7.2 HandlingTiedValues..................................... 176 5.7.3 RandS-PLUSFunctionscidandbmp...................... 180 5.8 ComparingTwoIndependentBinomials............................ 181 5.8.1 Storer–KimMethod....................................... 182 5.8.2 Beal’sMethod............................................. 183 5.8.3 RandS-PLUSFunctionstwobinomandtwobici........... 184 5.9 ComparingDependentGroups..................................... 184 5.9.1 ComparingDeciles........................................ 185 5.9.2 RandS-PLUSFunctionshiftdhd.......................... 186 5.9.3 ComparingTrimmedMeans............................... 188 5.9.4 RandS-PLUSFunctionyuend............................. 190 5.9.5 ABootstrap-tMethodforMarginalTrimmedMeans....... 191 5.9.6 RandS-PLUSFunctionydbt.............................. 192 5.9.7 PercentileBootstrap:ComparingM-EstimatorsandOther MeasuresofLocationandScale............................ 192 5.9.8 RandS-PLUSFunctionbootdpci.......................... 194 5.9.9 ComparingVariances...................................... 195 viii Contents 5.9.10 TheSignTestandInferencesAboutthe BinomialDistribution...................................... 196 5.9.11 RandS-PLUSFunctionbinomci........................... 198 5.10 Exercises........................................................... 199 Chapter6 SomeMultivariateMethods.............................. 203 6.1 GeneralizedVariance............................................... 203 6.2 Depth.............................................................. 204 6.2.1 MahalanobisDepth........................................ 204 6.2.2 HalfspaceDepth........................................... 205 6.2.3 ComputingHalfspaceDepth.............................. 207 6.2.4 RandS-PLUSFunctionsdepth2,depth,fdepth,fdepthv2, unidepth,depth2.for,depth3.for,fdepth.for, fdepthv2.for,andufdepth.for........................... 210 6.2.5 ProjectionDepth........................................... 211 6.2.6 RandS-PLUSFunctionspdisandpdis.for............... 212 6.2.7 OtherMeasuresofDepth.................................. 213 6.2.8 RandS-PLUSFunctionzdepth............................ 214 6.3 SomeAffine-EquivariantEstimators................................ 214 6.3.1 Minimum-VolumeEllipsoidEstimator..................... 215 6.3.2 TheMinimum-CovarianceDeterminantEstimator......... 216 6.3.3 S-EstimatorsandConstrainedM-Estimators............... 216 6.3.4 Donoho–GaskoGeneralizationofaTrimmedMean........ 218 6.3.5 RandS-PLUSFunctionsdmeananddmean.for............. 219 6.3.6 TheStahel–DonohoW-Estimator.......................... 220 6.4 MultivariateOutlierDetectionMethods............................. 221 6.4.1 ARelplot.................................................. 222 6.4.2 RandS-PLUSFunctionrelplot........................... 223 6.4.3 TheMVEMethod......................................... 226 6.4.4 TheMCDMethod......................................... 226 6.4.5 RandS-PLUSFunctionscov.mveandcov.mcd............. 226 6.4.6 RandS-PLUSFunctionsoutmveandout................... 227 6.4.7 TheMGVMethod......................................... 228 6.4.8 RandS-PLUSFunctionoutmgv............................ 231 Contents ix 6.4.9 AProjectionMethod....................................... 231 6.4.10 RandS-PLUSFunctionsoutproandoutpro.for.......... 233 6.4.11 CommentsonChoosingaMethod......................... 234 6.5 ASkippedEstimatorofLocationandScatter........................ 236 6.5.1 RandS-PLUSFunctionssmean,smean.for,wmcd,wmve, mgvmean,andspat......................................... 238 6.6 ConfidenceRegionandInferenceBasedontheOPEstimatorof Location............................................................ 240 6.6.1 RandS-PLUSFunctionssmeancrandsmeancr.for........ 241 6.6.2 InferencesBasedontheMGVEstimator................... 243 6.6.3 RandS-PLUSFunctionsmgvcr............................ 244 6.7 Two-SampleCase.................................................. 244 6.7.1 RandS-PLUSFunctionssmean2andsmean2.for.......... 245 6.8 MultivariateDensityEstimators.................................... 245 6.9 ATwo-Sample,Projection–TypeExtensionofthe Wilcoxon–Mann–WhitneyTest..................................... 247 6.9.1 RandS-PLUSFunctionsmulwmwandmulwmw.for.......... 249 6.10 ARelativeDepthAnalogoftheWilcoxon–Mann–WhitneyTest..... 250 6.10.1 RandS-PLUSFunctionsmwmwandmwmw.for............... 252 6.11 ComparisonsBasedonDepth....................................... 253 6.11.1 RandS-PLUSFunctionslsqs3,lsqs3.for,anddepthg2... 256 6.12 ComparingDependentGroupsBasedonAllPairwiseDifferences... 259 6.12.1 RandS-PLUSFunctiondfried............................ 261 6.13 Exercises........................................................... 262 Chapter7 One-WayandHigherDesignsfor IndependentGroups...................................... 265 7.1 TrimmedMeansandaOne-WayDesign............................ 266 7.1.1 AWelch-TypeAdjustedDegreesofFreedomProcedure... 266 7.1.2 RandS-PLUSFunctiont1way............................. 268 7.1.3 AGeneralizationofBox’sMethod......................... 270 7.1.4 RandS-PLUSFunctionbox1way........................... 270 7.1.5 ComparingMedians....................................... 271

Description:
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.