ebook img

Introduction to Quantum Field Theory in Condensed Matter Physics PDF

410 Pages·2001·3.432 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Quantum Field Theory in Condensed Matter Physics

Introduction to Quantum (cid:12)eld theory in condensed matter physics Henrik Bruus and Karsten Flensberg (cid:31)rsted Laboratory Niels Bohr Institute Copenhagen, 1 September 2001 ii Contents 1 First and second quantization 3 1.1 First quantization, single-particle systems . . . . . . . . . . . . . . . . . . . 4 1.2 First quantization, many-particle systems . . . . . . . . . . . . . . . . . . . 6 1.2.1 Permutation symmetry and indistinguishability . . . . . . . . . . . . 6 1.2.2 The single-particle states as basis states . . . . . . . . . . . . . . . . 7 1.2.3 Operators in (cid:12)rst quantization . . . . . . . . . . . . . . . . . . . . . 9 1.3 Second quantization, basic concepts . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 The occupation number representation . . . . . . . . . . . . . . . . . 11 1.3.2 The boson creation and annihilation operators . . . . . . . . . . . . 12 1.3.3 The fermion creation and annihilation operators . . . . . . . . . . . 14 1.3.4 The general form for second quantization operators . . . . . . . . . . 16 1.3.5 Change of basis in second quantization . . . . . . . . . . . . . . . . . 17 1.3.6 Quantum (cid:12)eld operators and their Fourier transforms . . . . . . . . 19 1.4 Second quantization, speci(cid:12)c operators . . . . . . . . . . . . . . . . . . . . . 20 1.4.1 The harmonic oscillator in second quantization . . . . . . . . . . . . 20 1.4.2 The electromagnetic (cid:12)eld in second quantization . . . . . . . . . . . 21 1.4.3 Operators for kinetic energy, spin, density, and current . . . . . . . . 23 1.4.4 The Coulomb interaction in second quantization . . . . . . . . . . . 25 1.4.5 Basis states for systems with di(cid:11)erent kinds of particles . . . . . . . 26 1.5 Second quantization and statistical mechanics . . . . . . . . . . . . . . . . . 27 1.5.1 The distribution function for non-interacting fermions . . . . . . . . 30 1.5.2 Distribution functions for non-interacting bosons . . . . . . . . . . . 30 1.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 The electron gas 33 2.1 The non-interacting electron gas . . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.1 Bloch theory of electrons in a static ion lattice . . . . . . . . . . . . 35 2.1.2 Non-interacting electrons in the jellium model. . . . . . . . . . . . . 37 2.1.3 Non-interacting electrons at (cid:12)nite temperature . . . . . . . . . . . . 40 2.2 Electron interactions in perturbation theory . . . . . . . . . . . . . . . . . . 41 st 2.2.1 Electron interactions in 1 order perturbation theory . . . . . . . . 43 nd 2.2.2 Electron interactions in 2 order perturbation theory . . . . . . . . 45 2.3 Electron gases in 3, 2, 1, and 0 dimensions . . . . . . . . . . . . . . . . . . . 46 iii iv CONTENTS 2.3.1 3D electron gases: metals and semiconductors . . . . . . . . . . . . . 47 2.3.2 2D electron gases: GaAs/Ga1 xAlxAs heterostructures . . . . . . . . 48 (cid:0) 2.3.3 1D electron gases: carbon nanotubes . . . . . . . . . . . . . . . . . . 50 2.3.4 0D electron gases: quantum dots . . . . . . . . . . . . . . . . . . . . 51 3 Phonons; coupling to electrons 53 3.1 Jellium oscillations and Einstein phonons . . . . . . . . . . . . . . . . . . . 54 3.2 Electron-phonon interaction and the sound velocity . . . . . . . . . . . . . . 55 3.3 Lattice vibrations and phonons in 1D . . . . . . . . . . . . . . . . . . . . . 55 3.4 Acoustical and optical phonons in 3D . . . . . . . . . . . . . . . . . . . . . 58 3.5 The speci(cid:12)c heat of solids in the Debye model . . . . . . . . . . . . . . . . . 61 3.6 Electron-phonon interaction in the lattice model . . . . . . . . . . . . . . . 63 3.7 Electron-phonon interaction in the jellium model . . . . . . . . . . . . . . . 65 3.8 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Mean (cid:12)eld theory 67 4.1 The art of mean (cid:12)eld theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Hartree{Fock approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3 Broken symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4.1 The Heisenberg model of ionic ferromagnets . . . . . . . . . . . . . . 75 4.4.2 The Stoner model of metallic ferromagnets . . . . . . . . . . . . . . 77 4.5 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5.1 Breaking of global gauge symmetry and its consequences. . . . . . . 80 4.5.2 Microscopic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5 Time evolution pictures 89 5.1 The Schr(cid:127)odinger picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 The Heisenberg picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3 The interaction picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4 Time-evolution in linear response . . . . . . . . . . . . . . . . . . . . . . . . 93 5.5 Time dependent creation and annihilation operators . . . . . . . . . . . . . 93 5.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 Linear response theory 97 6.1 The general Kubo formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 Kubo formula for conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3 Kubo formula for conductance . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4 Kubo formula for the dielectric function . . . . . . . . . . . . . . . . . . . . 103 6.4.1 Dielectric function for translation-invariant system . . . . . . . . . . 105 6.4.2 Relation between dielectric function and conductivity . . . . . . . . 105 6.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 CONTENTS v 7 Green’s functions 107 7.1 \Classical" Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.2 Green’s function for the single particle Schr(cid:127)odinger equation . . . . . . . . . 108 7.3 The single-particle Green’s function of a many-body system . . . . . . . . . 111 7.3.1 Green’s function of translation-invariant systems . . . . . . . . . . . 112 7.3.2 Green’s function of free electrons . . . . . . . . . . . . . . . . . . . . 113 7.3.3 The Lehmann representation . . . . . . . . . . . . . . . . . . . . . . 114 7.3.4 The spectral function . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.3.5 Broadening of the spectral function. . . . . . . . . . . . . . . . . . . 117 7.4 Measuring the single-particle spectral function . . . . . . . . . . . . . . . . 117 7.4.1 Tunneling spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.4.2 Optical spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.5 The two-particle correlation function of a many-body system . . . . . . . . 122 7.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8 Equation of motion theory 127 8.1 The single-particle Green’s function . . . . . . . . . . . . . . . . . . . . . . 127 8.1.1 Non-interacting particles . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.2 Anderson’s model for magnetic impurities . . . . . . . . . . . . . . . . . . . 129 8.2.1 The equation of motion for the Anderson model . . . . . . . . . . . 131 8.2.2 Mean-(cid:12)eld approximation for the Anderson model . . . . . . . . . . 132 8.2.3 Solving the Anderson model and comparison with experiments . . . 133 8.2.4 Coulomb blockade and the Anderson model . . . . . . . . . . . . . . 135 8.3 The two particle correlation function . . . . . . . . . . . . . . . . . . . . . . 135 8.4 The Random Phase Approximation (RPA) . . . . . . . . . . . . . . . . . . 135 8.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9 Imaginary time Green’s functions 139 9.1 De(cid:12)nitions of Matsubara Green’s functions . . . . . . . . . . . . . . . . . . 142 9.1.1 Fourier transform of Matsubara Green’s functions . . . . . . . . . . 143 9.2 Connection between Matsubara and retarded functions . . . . . . . . . . . . 144 9.2.1 Advanced functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.3 Single-particle Matsubara Green’s function . . . . . . . . . . . . . . . . . . 146 9.3.1 Matsubara Green’s function for non-interacting particles . . . . . . . 146 9.4 Evaluation of Matsubara sums . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.4.1 Summations over functions with simple poles . . . . . . . . . . . . . 149 9.4.2 Summations over functions with known branch cuts . . . . . . . . . 150 9.5 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.6 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.7 Example: polarizability of free electrons . . . . . . . . . . . . . . . . . . . . 155 9.8 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 vi CONTENTS 10 Feynman diagrams and external potentials 159 10.1 Non-interacting particles in external potentials . . . . . . . . . . . . . . . . 159 10.2 Elastic scattering and Matsubara frequencies . . . . . . . . . . . . . . . . . 162 10.3 Random impurities in disordered metals . . . . . . . . . . . . . . . . . . . . 163 10.3.1 Feynman diagrams for the impurity scattering . . . . . . . . . . . . 165 10.4 Impurity self-average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.5 Self-energy for impurity scattered electrons . . . . . . . . . . . . . . . . . . 171 10.5.1 Lowest order approximation . . . . . . . . . . . . . . . . . . . . . . . 172 st 10.5.2 1 order Born approximation . . . . . . . . . . . . . . . . . . . . . . 172 10.5.3 The full Born approximation . . . . . . . . . . . . . . . . . . . . . . 175 10.5.4 The self-consistent Born approximation and beyond . . . . . . . . . 177 10.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11 Feynman diagrams and pair interactions 181 11.1 The perturbation series for . . . . . . . . . . . . . . . . . . . . . . . . . . 181 G 11.2 The Feynman rules for pair interactions . . . . . . . . . . . . . . . . . . . . 183 11.2.1 Feynman rules for the denominator of (b;a) . . . . . . . . . . . . . 183 G 11.2.2 Feynman rules for the numerator of (b;a) . . . . . . . . . . . . . . 184 G 11.2.3 The cancellation of disconnected Feynman diagrams . . . . . . . . . 185 11.3 Self-energy and Dyson’s equation . . . . . . . . . . . . . . . . . . . . . . . . 187 11.4 The Feynman rules in Fourier space . . . . . . . . . . . . . . . . . . . . . . 188 11.5 Examples of how to evaluate Feynman diagrams . . . . . . . . . . . . . . . 190 11.5.1 The Hartree self-energy diagram . . . . . . . . . . . . . . . . . . . . 190 11.5.2 The Fock self-energy diagram . . . . . . . . . . . . . . . . . . . . . . 191 11.5.3 The pair-bubble self-energy diagram . . . . . . . . . . . . . . . . . . 192 11.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 12 The interacting electron gas 195 12.1 The self-energy in the random phase approximation . . . . . . . . . . . . . 195 12.1.1 The density dependence of self-energy diagrams . . . . . . . . . . . . 196 12.1.2 The divergence number of self-energy diagrams . . . . . . . . . . . . 197 12.1.3 RPA resummation of the self-energy . . . . . . . . . . . . . . . . . . 197 12.2 The renormalized Coulomb interaction in RPA . . . . . . . . . . . . . . . . 199 12.2.1 Calculation of the pair-bubble. . . . . . . . . . . . . . . . . . . . . . 200 12.2.2 The electron-hole pair interpretation of RPA . . . . . . . . . . . . . 202 12.3 The ground state energy of the electron gas . . . . . . . . . . . . . . . . . . 202 12.4 The dielectric function and screening . . . . . . . . . . . . . . . . . . . . . . 205 12.5 Plasma oscillations and Landau damping . . . . . . . . . . . . . . . . . . . 209 12.5.1 Plasma oscillations and plasmons . . . . . . . . . . . . . . . . . . . . 210 12.5.2 Landau damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 CONTENTS vii 13 Fermi liquid theory 215 13.1 Adiabatic continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 13.1.1 The quasiparticle concept and conserved quantities . . . . . . . . . . 217 13.2 Semi-classical treatment of screening and plasmons . . . . . . . . . . . . . . 219 13.2.1 Static screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 13.2.2 Dynamical screening . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 13.3 Semi-classical transport equation . . . . . . . . . . . . . . . . . . . . . . . . 222 13.3.1 Finite life time of the quasiparticles . . . . . . . . . . . . . . . . . . 225 13.4 Microscopic basis of the Fermi liquid theory . . . . . . . . . . . . . . . . . . 227 13.4.1 Renormalization of the single particle Green’s function . . . . . . . . 227 13.4.2 Imaginary part of the single particle Green’s function . . . . . . . . 229 13.4.3 Mass renormalization? . . . . . . . . . . . . . . . . . . . . . . . . . . 232 13.5 Outlook and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 14 Impurity scattering and conductivity 235 14.1 Vertex corrections and dressed Green’s functions . . . . . . . . . . . . . . . 236 14.2 The conductivity in terms of a general vertex function . . . . . . . . . . . . 241 14.3 The conductivity in the (cid:12)rst Born approximation . . . . . . . . . . . . . . . 243 14.4 The weak localization correction to the conductivity . . . . . . . . . . . . . 246 14.5 Combined RPA and Born approximation . . . . . . . . . . . . . . . . . . . . 256 15 Transport in mesoscopic systems 257 15.1 The S-matrix and scattering states . . . . . . . . . . . . . . . . . . . . . . . 258 15.1.1 Unitarity of the S-matrix . . . . . . . . . . . . . . . . . . . . . . . . 261 15.1.2 Time-reversal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 262 15.2 Conductance and transmission coeÆcients . . . . . . . . . . . . . . . . . . . 263 15.2.1 The Landauer-Bu(cid:127)ttiker formula, heuristic derivation . . . . . . . . . 263 15.2.2 The Landauer-Bu(cid:127)ttiker formula, linear response derivation. . . . . . 265 15.3 Electron wave guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 15.3.1 Quantum point contact and conductance quantization . . . . . . . . 266 15.3.2 Aharonov-Bohm e(cid:11)ect . . . . . . . . . . . . . . . . . . . . . . . . . . 270 15.4 Disordered mesoscopic systems . . . . . . . . . . . . . . . . . . . . . . . . . 271 15.4.1 Statistics of quantum conductance, random matrix theory . . . . . . 271 15.4.2 Weak localization in mesoscopic systems . . . . . . . . . . . . . . . . 273 15.4.3 Universal conductance (cid:13)uctuations . . . . . . . . . . . . . . . . . . . 274 15.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 16 Green’s functions and phonons 277 16.1 The Green’s function for free phonons . . . . . . . . . . . . . . . . . . . . . 277 16.2 Electron-phonon interaction and Feynman diagrams . . . . . . . . . . . . . 278 16.3 Combining Coulomb and electron-phonon interactions . . . . . . . . . . . . 281 16.3.1 Migdal’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 16.3.2 Jellium phonons and the e(cid:11)ective electron-electron interaction . . . 282 16.4 Phonon renormalization by electron screening in RPA . . . . . . . . . . . . 283 viii CONTENTS 16.5 The Cooper instability and Feynman diagrams . . . . . . . . . . . . . . . . 286 17 Superconductivity 289 17.1 The Cooper Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 17.2 The BCS groundstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 17.3 BCS theory with Green’s functions . . . . . . . . . . . . . . . . . . . . . . . 289 17.4 Experimental consequences of the BCS states . . . . . . . . . . . . . . . . . 289 17.4.1 Tunneling density of states . . . . . . . . . . . . . . . . . . . . . . . 289 17.4.2 speci(cid:12)c heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 17.5 The Josephson e(cid:11)ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 18 One-dimensional electron gas and Luttinger liquids 291 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 18.2 First look at interacting electrons in one dimension . . . . . . . . . . . . . . 292 18.2.1 One-dimensional transmission line analog . . . . . . . . . . . . . . . 292 18.3 The Luttinger-Tomonaga model - spinless case . . . . . . . . . . . . . . . . 292 18.3.1 Interacting one dimensional electron system . . . . . . . . . . . . . . 292 18.3.2 Bosonization of Tomonaga model-Hamiltonian . . . . . . . . . . . . 292 18.3.3 Diagonalization of bosonized Hamiltonian . . . . . . . . . . . . . . . 292 18.3.4 Real space formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 292 18.3.5 Electron operators in bosonized form . . . . . . . . . . . . . . . . . . 292 18.4 Luttinger liquid with spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 18.5 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 18.6 Tunneling into spinless Luttinger liquid . . . . . . . . . . . . . . . . . . . . 292 18.6.1 Tunneling into the end of Luttinger liquid . . . . . . . . . . . . . . . 292 18.7 What is a Luttinger liquid? . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 18.8 Experimental realizations of Luttinger liquid physics . . . . . . . . . . . . . 292 18.8.1 Edge states in the fractional quantum Hall e(cid:11)ect . . . . . . . . . . . 292 18.8.2 Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 A Fourier transformations 293 A.1 Continuous functions in a (cid:12)nite region . . . . . . . . . . . . . . . . . . . . . 293 A.2 Continuous functions in an in(cid:12)nite region . . . . . . . . . . . . . . . . . . . 294 A.3 Time and frequency Fourier transforms . . . . . . . . . . . . . . . . . . . . 294 A.4 Some useful rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 A.5 Translation invariant systems . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Exercises 297 Preface This introduction to quantum (cid:12)eld theory in condensed matter physics has emerged from ourcoursesforgraduateandadvancedundergraduatestudentsattheNielsBohrInstitute, University of Copenhagen, held between the fall of 1999 and the spring of 2001. We have gone through the pain of writing these notes, because we felt the pedagogical need for a book which aimed at putting an emphasis on the physical contents and applications of the rather involved mathematical machinery of quantum (cid:12)eld theory without loosing mathematical rigor. We hope we have succeeded at least to some extend in reaching this goal. We wouldliketothankthestudentswhoputupwiththe(cid:12)rstversionsofthisbookand for theirenumerableandvaluablecomments andsuggestions. We are particularlygrateful to the students of Many-particle Physics I & II, theacademic year 2000-2001, andto Niels Asger Mortensen and Brian M(cid:28)ller Andersen for careful proof reading. Naturally, we are solely responsible for the hopefully few remaining errors and typos. During the work on this book H.B. was supported by the Danish Natural Science Re- search Council through Ole R(cid:28)mer Grant No. 9600548. (cid:31)rsted Laboratory, Niels Bohr Institute Karsten Flensberg 1 September, 2001 Henrik Bruus 1 2 PREFACE

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.