Recommended Titles in Related Topics Lectures of Sidney Coleman on Quantum Field Theory Foreword by David Kaiser edited by Bryan Gin-ge Chen, David Derbes, David Griffiths, Brian Hill, Richard Sohn and Yuan-Sen Ting ISBN: 978-981-4632-53-9 ISBN: 978-981-4635-50-9 (pbk) Lectures on Quantum Field Theory Second Edition by Ashok Das ISBN: 978-981-122-086-9 ISBN: 978-981-122-216-0 (pbk) Foundations of Quantum Field Theory by Klaus D Rothe ISBN: 978-981-122-192-7 ISBN: 978-981-122-300-6 (pbk) Mathematical Foundations of Quantum Field Theory by Albert Schwarz ISBN: 978-981-3278-63-9 YYoonnggQQii -- 1122441155 -- IInnttrroodduuccttiioonn ttoo QQuuaannttuumm FFiieelldd TThheeoorryy..iinndddd 11 88//1122//22002211 44::1177::3322 ppmm (cid:31)(cid:30)(cid:29)(cid:28)(cid:27)(cid:26)(cid:25)(cid:24)(cid:29)(cid:31)(cid:27)(cid:30)(cid:23)(cid:29)(cid:27) Quantum Field Theory Standard Model and the World Scientifi c Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Names: Hollik, W. (Wolfgang), 1951– author. Title: Introduction to quantum field theory and the standard model / Wolfgang Hollik, Max Planck Institute for Physics, Germany. Description: New Jersey : World Scientific, [2022] | Includes bibliographical references and index. Identifiers: LCCN 2021050559 (print) | LCCN 2021050560 (ebook) | ISBN 9789811242175 (hardcover) | ISBN 9789811242182 (ebook) | ISBN 9789811242199 (ebook other) Subjects: LCSH: Quantum field theory. Classification: LCC QC174.45 .H647 2022 (print) | LCC QC174.45 (ebook) | DDC 530.14/3--dc23/eng/20211201 LC record available at https://lccn.loc.gov/2021050559 LC ebook record available at https://lccn.loc.gov/2021050560 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2022 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/12415#t=suppl Typeset by Stallion Press Email: [email protected] Printed in Singapore YYoonnggQQii -- 1122441155 -- IInnttrroodduuccttiioonn ttoo QQuuaannttuumm FFiieelldd TThheeoorryy..iinndddd 22 88//1122//22002211 44::1177::3322 ppmm December9,2021 12:55 IntroductiontoQuantumFieldTheory...-9inx6in b4460-fm pagev Preface These lecture notes are based on material presented during courses at the Technical University Munich (TUM) to physics students with interest in particlephysicsanditstheoreticalfoundation. Thismaterialhasbeenelab- orated and expanded, to provide both the conceptual ideas regarding the Standard Model of particle physics and some technical details on the for- mulation within the context of gauge theories. The scope ranges from rel- ativistic quantum mechanics to an introduction to quantum field theory with quantum electrodynamics as an example of a successful theory of a fundamentalinteraction,andisfurtherextendedtowardsquantumchromo- dynamicsforthestronginteractionandtotheelectroweakStandardModel fortheunifiedelectromagneticandweakinteractions,whichcouldcelebrate anenormoussuccessbythe2012discoveryofanewspin-0particleshowing the properties of the predicted Higgs boson. Quantumfieldtheoryis the primarytheoreticaltool for the description of the microscopic dynamics of the strong and electroweak interactions. It is thus necessary to provide an introduction to the basic concepts of rela- tivistic quantumfieldtheory, perturbationtheory, Feynmangraphs, before advancingtoAbelianandnon-Abeliangaugetheoriesandtheirapplication to the fundamental forces and the resulting phenomenological implications with their experimental tests. The success of perturbative QCD at high energies goes with the basic features of asymptotic freedom and the par- ton model, displayed in the chapter on QCD. Phenomenology of W and Z bosons as well as Higgs bosons is part of the electroweak chapter includ- ing recent experimental results, precision tests and current status of the Standard Model. v December9,2021 12:55 IntroductiontoQuantumFieldTheory...-9inx6in b4460-fm pagevi vi Introduction toQuantum Field Theory and the Standard Model The style is elementary and pedagogical. The text is at a level appro- priateforstudentswhohadalreadyacourseinquantummechanicsandare familiar with classical electrodynamics and the basics of special relativity. Special relativity in the first chapter is a compact recapitulation serving as a summary and for setting the language and notations. The formalism of quantum field theory is kept at a minimum. Especially the Feynman rulesarenotderivedinasystematicway;instead,themethodiselucidated on the basis of examples to convey a more intuitive understanding that is thought to be more helpful for an early overview rather than proofs and advanced technical effort. Explicit calculations are performed for selected examplessothatthereaderbecomesacquaintedwithpracticalcalculations in particular for scattering amplidudes, cross sections and decay rates at lowest order. Extra material on specific theoretical issues is included in various places for the interested student; it can be skipped during a first reading. The lecture notes provide a compact introduction, convenient for stu- dentsdealingwithparticlephysicsandrelatedareastogetfirstinformation before specializing towards experimental or theoretical topics. They may also serve as a basis to study elaborate textbooks, like Michael Peskin and Daniel Schroeder’s An Introduction to Quantum Field Theory (Westview Press, 1995), Matthew Schwartz’s Quantum Field Theory and the Stan- dard Model (Cambridge University Press, 2014), or Steven Weinberg’s The Quantum Theory of Fields (Cambridge University Press, 1995). ItismyspecialconcerntothankmycolleaguesfromthePhysicsDepart- mentatTUM,PeterFierlinger,LotharOberauer,StephanPaul,andStefan Scho¨nert,forthepleasantcooperationduringvariouslecturecoursescover- ingbothexperimentalandtheoreticalaspects,overmanyyearsofteaching. Wolfgang Hollik December9,2021 12:55 IntroductiontoQuantumFieldTheory...-9inx6in b4460-fm pagevii Contents Preface v 1. Special Relativity 1 1.1 Notations and Conventions . . . . . . . . . . . . . . . . . . 1 1.2 Lorentz Transformations . . . . . . . . . . . . . . . . . . . 3 1.2.1 Examples of Lorentz tranformations . . . . . . . . 3 1.2.2 General 4-vector . . . . . . . . . . . . . . . . . . . 5 1.2.3 Tensor . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Covariant equation of motion . . . . . . . . . . . . 8 1.4 LagrangianFormulation . . . . . . . . . . . . . . . . . . . 9 1.4.1 Free particle . . . . . . . . . . . . . . . . . . . . . 10 1.4.2 Particle in an electromagnetic field . . . . . . . . . 11 1.5 Fields and Derivatives . . . . . . . . . . . . . . . . . . . . 12 1.5.1 Scalar field . . . . . . . . . . . . . . . . . . . . . . 12 1.5.2 Vector field . . . . . . . . . . . . . . . . . . . . . . 13 1.5.3 Tensor field . . . . . . . . . . . . . . . . . . . . . . 13 1.5.4 Partial derivatives . . . . . . . . . . . . . . . . . . 13 1.6 Electrodynamics. . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.1 Potentials . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.2 Field strengths . . . . . . . . . . . . . . . . . . . . 14 1.6.3 Gauge transformations . . . . . . . . . . . . . . . 15 1.6.4 Electromagnetic current . . . . . . . . . . . . . . . 15 1.6.5 Maxwell’s equations . . . . . . . . . . . . . . . . . 15 1.6.6 Energy-momentum tensor . . . . . . . . . . . . . . 16 vii December9,2021 12:55 IntroductiontoQuantumFieldTheory...-9inx6in b4460-fm pageviii viii Introduction to Quantum Field Theory and the Standard Model 2. Elements of Relativistic Quantum Field Theory 19 2.1 Klein–Gordon Equation . . . . . . . . . . . . . . . . . . . 20 2.1.1 Relativistic quantum mechanics of spin-0 particles . . . . . . . . . . . . . . . . . . . . 20 2.1.2 Quantum field theoretical formulation . . . . . . . 22 2.1.3 Current and charge . . . . . . . . . . . . . . . . . 24 2.1.4 Mechanical observables . . . . . . . . . . . . . . . 25 2.2 Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.1 Relativistic quantum mechanics of spin-1/2 particles . . . . . . . . . . . . . . . . . . 26 2.2.2 Solutions of the Dirac equation . . . . . . . . . . . 31 2.2.3 Quantum field theoretical formulation . . . . . . . 36 2.3 Lorentz Symmetry and Dirac Equation . . . . . . . . . . . 41 2.3.1 Lorentz transformations and spinors . . . . . . . . 41 2.3.2 Covariance of the Dirac equation . . . . . . . . . . 46 2.3.3 Lorentz covariants . . . . . . . . . . . . . . . . . . 49 2.4 Dirac Particle in an External Electromagnetic Field . . . . 49 2.4.1 Electrostatic Coulomb field . . . . . . . . . . . . . 50 2.4.2 Static magnetic field . . . . . . . . . . . . . . . . . 51 3. Quantum Electrodynamics 55 3.1 Free Electromagnetic Field . . . . . . . . . . . . . . . . . . 55 3.1.1 Quantized electromagnetic field . . . . . . . . . . 56 3.1.2 Mechanical observables . . . . . . . . . . . . . . . 57 3.2 Interacting Electromagnetic Field . . . . . . . . . . . . . . 59 3.3 Interacting Dirac-Field . . . . . . . . . . . . . . . . . . . . 61 3.4 Interaction and Time Evolution . . . . . . . . . . . . . . . 62 3.5 S-Matrix Elements and Feynman Graphs . . . . . . . . . . 64 3.5.1 Modus operandi for the calculation of matrix elements . . . . . . . . . . . . . . . . . . . 68 3.5.2 Extension to all fermions . . . . . . . . . . . . . . 70 3.6 Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.6.1 Special case: 2-particle processes . . . . . . . . . . 74 3.6.2 Unpolarized cross section . . . . . . . . . . . . . . 76 3.6.3 Decay width . . . . . . . . . . . . . . . . . . . . . 77 3.7 On the Calculation of Cross Sections . . . . . . . . . . . . 78 3.7.1 Spinors in matrix elements . . . . . . . . . . . . . 78 3.7.2 Traces over Dirac matrices . . . . . . . . . . . . . 79 3.7.3 Polarizationsum for photons . . . . . . . . . . . . 79 December9,2021 12:55 IntroductiontoQuantumFieldTheory...-9inx6in b4460-fm pageix Contents ix 3.8 Precision Tests of QED . . . . . . . . . . . . . . . . . . . . 82 3.8.1 Precision tests at low energies . . . . . . . . . . . 83 3.9 Addendum: Coulomb Gauge and Feynman Graphs . . . . 86 3.9.1 Classical solution for the radiation field . . . . . . 89 4. Lagrangians and Symmetries 91 4.1 LagrangianFormalism for Fields. . . . . . . . . . . . . . . 91 4.1.1 Scalar field . . . . . . . . . . . . . . . . . . . . . . 93 4.1.2 Dirac field . . . . . . . . . . . . . . . . . . . . . . 94 4.1.3 Vector field . . . . . . . . . . . . . . . . . . . . . . 94 4.2 Space–Time Symmetries . . . . . . . . . . . . . . . . . . . 95 4.2.1 Translational invariance and 4-momentum . . . . 96 4.2.2 Rotational invariance and angular momentum . . . . . . . . . . . . . . . . . . . . . . 101 4.3 Gauge Symmetry and QED . . . . . . . . . . . . . . . . . 105 4.3.1 Local gauge transformations . . . . . . . . . . . . 107 4.3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . 109 4.4 Non-Abelian Gauge Symmetries . . . . . . . . . . . . . . . 110 4.4.1 Global gauge symmetry . . . . . . . . . . . . . . . 111 4.4.2 Local gauge symmetry. . . . . . . . . . . . . . . . 115 4.4.3 Dynamics of the gauge fields . . . . . . . . . . . . 117 4.4.4 Gauge fixing and ghost fields . . . . . . . . . . . . 122 4.4.5 Perturbation theory and Feynman graphs . . . . . 125 5. Quantum Chromodynamics 127 5.1 Formulation of QCD . . . . . . . . . . . . . . . . . . . . . 127 5.1.1 Feynman rules . . . . . . . . . . . . . . . . . . . . 129 5.2 QCD Processes at High Energies . . . . . . . . . . . . . . 131 5.2.1 Processes at hadron colliders . . . . . . . . . . . . 137 5.3 Running Coupling Constant . . . . . . . . . . . . . . . . . 138 5.3.1 Fine structure constant of QED . . . . . . . . . . 139 5.3.2 Fine structure constant of QCD . . . . . . . . . . 141 5.4 Parton Distributions . . . . . . . . . . . . . . . . . . . . . 146 5.4.1 Parton model. . . . . . . . . . . . . . . . . . . . . 146 5.4.2 Deep-inelastic scattering . . . . . . . . . . . . . . 147 5.4.3 Parton distributions and QCD . . . . . . . . . . . 150 5.5 Hadronic Bound States . . . . . . . . . . . . . . . . . . . . 157 5.5.1 Representations of SU(3) . . . . . . . . . . . . . . 157 5.5.2 Hadron states . . . . . . . . . . . . . . . . . . . . 162