ebook img

Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques (Chapman & Hall CRC Data Mining and Knowledge Discovery Series) PDF

355 Pages·2010·5.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques (Chapman & Hall CRC Data Mining and Knowledge Discovery Series)

Introduction to Privacy-Preserving Data Publishing Concepts and Techniques C9148_FM.indd 1 7/8/10 12:56:45 PM Chapman & Hall/CRC Chapman & Hall/CRC Data Mining and Knowledge Discovery Series Data Mining and Knowledge Discovery Series SERIES EDITOR Vipin Kumar University of Minnesota Department of Computer Science and Engineering Minneapolis, Minnesota, U.S.A Introduction to AIMS AND SCOPE This series aims to capture new developments and applications in data mining and knowledge Privacy-Preserving discovery, while summarizing the computational tools and techniques useful in data analysis. This series encourages the integration of mathematical, statistical, and computational methods and techniques through the publication of a broad range of textbooks, reference works, and hand- Data Publishing books. The inclusion of concrete examples and applications is highly encouraged. The scope of the series includes, but is not limited to, titles in the areas of data mining and knowledge discovery methods and applications, modeling, algorithms, theory and foundations, data and knowledge visualization, data mining systems and tools, and privacy and security issues. Concepts and Techniques PUBLISHED TITLES UNDERSTANDING COMPLEX DATASETS: TEXT MINING: CLASSIFICATION, CLUSTERING, DATA MINING WITH MATRIX DECOMPOSITIONS AND APPLICATIONS David Skillicorn Ashok N. Srivastava and Mehran Sahami COMPUTATIONAL METHODS OF FEATURE BIOLOGICAL DATA MINING SELECTION Jake Y. Chen and Stefano Lonardi Huan Liu and Hiroshi Motoda INFORMATION DISCOVERY ON ELECTRONIC CONSTRAINED CLUSTERING: ADVANCES IN HEALTH RECORDS ALGORITHMS, THEORY, AND APPLICATIONS Vagelis Hristidis Sugato Basu, Ian Davidson, and Kiri L. Wagstaff Benjamin C. M. Fung, Ke Wang, TEMPORAL DATA MINING KNOWLEDGE DISCOVERY FOR Theophano Mitsa COUNTERTERRORISM AND LAW ENFORCEMENT David Skillicorn RELATIONAL DATA CLUSTERING: MODELS, Ada Wai-Chee Fu, and Philip S. Yu ALGORITHMS, AND APPLICATIONS MULTIMEDIA DATA MINING: A SYSTEMATIC Bo Long, Zhongfei Zhang, and Philip S. Yu INTRODUCTION TO CONCEPTS AND THEORY KNOWLEDGE DISCOVERY FROM DATA STREAMS Zhongfei Zhang and Ruofei Zhang João Gama NEXT GENERATION OF DATA MINING STATISTICAL DATA MINING USING SAS Hillol Kargupta, Jiawei Han, Philip S. Yu, APPLICATIONS, SECOND EDITION Rajeev Motwani, and Vipin Kumar George Fernandez DATA MINING FOR DESIGN AND MARKETING INTRODUCTION TO PRIVACY-PRESERVING DATA Yukio Ohsawa and Katsutoshi Yada PUBLISHING: CONCEPTS AND TECHNIQUES THE TOP TEN ALGORITHMS IN DATA MINING Benjamin C. M. Fung, Ke Wang, Ada Wai-Chee Fu, Xindong Wu and Vipin Kumar and Philip S. Yu GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY, SECOND EDITION Harvey J. Miller and Jiawei Han C9148_FM.indd 2 7/8/10 12:56:46 PM Chapman & Hall/CRC Chapman & Hall/CRC Data Mining and Knowledge Discovery Series Data Mining and Knowledge Discovery Series SERIES EDITOR Vipin Kumar University of Minnesota Department of Computer Science and Engineering Minneapolis, Minnesota, U.S.A Introduction to AIMS AND SCOPE This series aims to capture new developments and applications in data mining and knowledge Privacy-Preserving discovery, while summarizing the computational tools and techniques useful in data analysis. This series encourages the integration of mathematical, statistical, and computational methods and techniques through the publication of a broad range of textbooks, reference works, and hand- Data Publishing books. The inclusion of concrete examples and applications is highly encouraged. The scope of the series includes, but is not limited to, titles in the areas of data mining and knowledge discovery methods and applications, modeling, algorithms, theory and foundations, data and knowledge visualization, data mining systems and tools, and privacy and security issues. Concepts and Techniques PUBLISHED TITLES UNDERSTANDING COMPLEX DATASETS: TEXT MINING: CLASSIFICATION, CLUSTERING, DATA MINING WITH MATRIX DECOMPOSITIONS AND APPLICATIONS David Skillicorn Ashok N. Srivastava and Mehran Sahami COMPUTATIONAL METHODS OF FEATURE BIOLOGICAL DATA MINING SELECTION Jake Y. Chen and Stefano Lonardi Huan Liu and Hiroshi Motoda INFORMATION DISCOVERY ON ELECTRONIC CONSTRAINED CLUSTERING: ADVANCES IN HEALTH RECORDS ALGORITHMS, THEORY, AND APPLICATIONS Vagelis Hristidis Sugato Basu, Ian Davidson, and Kiri L. Wagstaff Benjamin C. M. Fung, Ke Wang, TEMPORAL DATA MINING KNOWLEDGE DISCOVERY FOR Theophano Mitsa COUNTERTERRORISM AND LAW ENFORCEMENT David Skillicorn RELATIONAL DATA CLUSTERING: MODELS, Ada Wai-Chee Fu, and Philip S. Yu ALGORITHMS, AND APPLICATIONS MULTIMEDIA DATA MINING: A SYSTEMATIC Bo Long, Zhongfei Zhang, and Philip S. Yu INTRODUCTION TO CONCEPTS AND THEORY KNOWLEDGE DISCOVERY FROM DATA STREAMS Zhongfei Zhang and Ruofei Zhang João Gama NEXT GENERATION OF DATA MINING STATISTICAL DATA MINING USING SAS Hillol Kargupta, Jiawei Han, Philip S. Yu, APPLICATIONS, SECOND EDITION Rajeev Motwani, and Vipin Kumar George Fernandez DATA MINING FOR DESIGN AND MARKETING INTRODUCTION TO PRIVACY-PRESERVING DATA Yukio Ohsawa and Katsutoshi Yada PUBLISHING: CONCEPTS AND TECHNIQUES THE TOP TEN ALGORITHMS IN DATA MINING Benjamin C. M. Fung, Ke Wang, Ada Wai-Chee Fu, Xindong Wu and Vipin Kumar and Philip S. Yu GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY, SECOND EDITION Harvey J. Miller and Jiawei Han C9148_FM.indd 3 7/8/10 12:56:46 PM Chapman & Hall/CRC Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4200-9148-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Introduction to privacy-preserving data publishing : concepts and techniques / Benjamin C.M. Fung … [et al.]. p. cm. -- (Data mining and knowledge discovery series) Includes bibliographical references and index. ISBN 978-1-4200-9148-9 (hardcover : alk. paper) 1. Database security. 2. Confidential communications. I. Fung, Benjamin C. M. II. Title. III. Series. QA76.9.D314I58 2010 005.8--dc22 2010023845 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com C9148_FM.indd 4 7/8/10 12:56:46 PM To Akina, Cyrus, Daphne, and my parents - B.F. To Lucy, Catherine, Caroline, and Simon - K.W. To my family - A.F. To my family - P.Y. Contents List of Figures xv List of Tables xvii List of Algorithms xxi Preface xxiii Acknowledgments xxix About the Authors xxxi I The Fundamentals 1 1 Introduction 3 1.1 Data Collection and Data Publishing . . . . . . . . . . . . . 4 1.2 What Is Privacy-PreservingData Publishing? . . . . . . . . 7 1.3 Related Research Areas . . . . . . . . . . . . . . . . . . . . . 9 2 Attack Models and Privacy Models 13 2.1 Record Linkage Model . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 k-Anonymity . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 (X,Y)-Anonymity . . . . . . . . . . . . . . . . . . . . 18 2.1.3 Dilemma on Choosing QID . . . . . . . . . . . . . . . 18 2.2 Attribute Linkage Model . . . . . . . . . . . . . . . . . . . . 19 2.2.1 (cid:2)-Diversity . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Confidence Bounding. . . . . . . . . . . . . . . . . . . 23 2.2.3 (X,Y)-Linkability . . . . . . . . . . . . . . . . . . . . 23 2.2.4 (X,Y)-Privacy . . . . . . . . . . . . . . . . . . . . . . 24 2.2.5 (α,k)-Anonymity . . . . . . . . . . . . . . . . . . . . . 24 2.2.6 LKC-Privacy . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.7 (k,e)-Anonymity . . . . . . . . . . . . . . . . . . . . . 26 2.2.8 t-Closeness . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.9 Personalized Privacy . . . . . . . . . . . . . . . . . . . 27 2.2.10 FF-Anonymity . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Table Linkage Model . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.1 (c,t)-Isolation . . . . . . . . . . . . . . . . . . . . . . . 30 vii viii Contents 2.4.2 (cid:4)-Differential Privacy . . . . . . . . . . . . . . . . . . . 30 2.4.3 (d,γ)-Privacy . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.4 Distributional Privacy . . . . . . . . . . . . . . . . . . 31 2.5 Modeling Adversary’s Background Knowledge . . . . . . . . 32 2.5.1 Skyline Privacy . . . . . . . . . . . . . . . . . . . . . . 32 2.5.2 Privacy-MaxEnt . . . . . . . . . . . . . . . . . . . . . 33 2.5.3 Skyline (B,t)-Privacy . . . . . . . . . . . . . . . . . . 33 3 Anonymization Operations 35 3.1 Generalization and Suppression . . . . . . . . . . . . . . . . 35 3.2 Anatomization and Permutation . . . . . . . . . . . . . . . . 38 3.3 Random Perturbation . . . . . . . . . . . . . . . . . . . . . . 41 3.3.1 Additive Noise . . . . . . . . . . . . . . . . . . . . . . 41 3.3.2 Data Swapping . . . . . . . . . . . . . . . . . . . . . . 42 3.3.3 Synthetic Data Generation . . . . . . . . . . . . . . . 42 4 Information Metrics 43 4.1 General Purpose Metrics . . . . . . . . . . . . . . . . . . . . 43 4.1.1 Minimal Distortion . . . . . . . . . . . . . . . . . . . . 43 4.1.2 ILoss . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.3 Discernibility Metric . . . . . . . . . . . . . . . . . . . 44 4.1.4 Distinctive Attribute . . . . . . . . . . . . . . . . . . . 45 4.2 Special Purpose Metrics . . . . . . . . . . . . . . . . . . . . . 45 4.3 Trade-Off Metrics . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Anonymization Algorithms 49 5.1 Algorithms for the Record Linkage Model . . . . . . . . . . . 49 5.1.1 Optimal Anonymization . . . . . . . . . . . . . . . . . 49 5.1.2 Locally Minimal Anonymization . . . . . . . . . . . . 51 5.1.3 Perturbation Algorithms . . . . . . . . . . . . . . . . . 54 5.2 Algorithms for the Attribute Linkage Model . . . . . . . . . 55 5.2.1 (cid:2)-Diversity Incognito and (cid:2)+-Optimize . . . . . . . . . 55 5.2.2 InfoGain Mondrian . . . . . . . . . . . . . . . . . . . . 56 5.2.3 Top-Down Disclosure. . . . . . . . . . . . . . . . . . . 56 5.2.4 Anatomize . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2.5 (k,e)-Anonymity Permutation . . . . . . . . . . . . . 58 5.2.6 Personalized Privacy . . . . . . . . . . . . . . . . . . . 58 5.3 Algorithms for the Table Linkage Model . . . . . . . . . . . . 59 5.3.1 δ-Presence Algorithms SPALM and MPALM . . . . . 59 5.4 Algorithms for the Probabilistic Attack Model . . . . . . . . 59 5.4.1 (cid:4)-Differential Additive Noise. . . . . . . . . . . . . . . 61 5.4.2 αβ Algorithm . . . . . . . . . . . . . . . . . . . . . . . 61 5.5 Attacks on Anonymous Data . . . . . . . . . . . . . . . . . . 61 5.5.1 Minimality Attack . . . . . . . . . . . . . . . . . . . . 61 5.5.2 deFinetti Attack . . . . . . . . . . . . . . . . . . . . . 63 Contents ix 5.5.3 Corruption Attack . . . . . . . . . . . . . . . . . . . . 64 II Anonymization for Data Mining 67 6 Anonymization for Classification Analysis 69 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Anonymization Problems for Red Cross BTS . . . . . . . . . 74 6.2.1 Privacy Model . . . . . . . . . . . . . . . . . . . . . . 74 6.2.2 Information Metrics . . . . . . . . . . . . . . . . . . . 75 6.2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . 81 6.3 High-Dimensional Top-Down Specialization (HDTDS) . . . . 82 6.3.1 Find the Best Specialization. . . . . . . . . . . . . . . 83 6.3.2 Perform the Best Specialization . . . . . . . . . . . . . 84 6.3.3 Update Score and Validity . . . . . . . . . . . . . . . . 87 6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.4 Workload-AwareMondrian . . . . . . . . . . . . . . . . . . . 89 6.4.1 Single CategoricalTarget Attribute. . . . . . . . . . . 89 6.4.2 Single Numerical Target Attribute . . . . . . . . . . . 90 6.4.3 Multiple Target Attributes . . . . . . . . . . . . . . . 91 6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.5 Bottom-Up Generalization . . . . . . . . . . . . . . . . . . . 92 6.5.1 The Anonymization Algorithm . . . . . . . . . . . . . 92 6.5.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . 93 6.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.1 The Anonymization Algorithm . . . . . . . . . . . . . 96 6.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.7 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . 96 6.7.1 Data Utility . . . . . . . . . . . . . . . . . . . . . . . . 97 6.7.2 Efficiency and Scalability . . . . . . . . . . . . . . . . 102 6.8 Summary and Lesson Learned . . . . . . . . . . . . . . . . . 103 7 Anonymization for Cluster Analysis 105 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.2 Anonymization Framework for Cluster Analysis . . . . . . . 105 7.2.1 Anonymization Problem for Cluster Analysis . . . . . 108 7.2.2 Overview of Solution Framework . . . . . . . . . . . . 112 7.2.3 Anonymization for Classification Analysis . . . . . . . 114 7.2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 118 7.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3 Dimensionality Reduction-Based Transformation . . . . . . . 124 7.3.1 Dimensionality Reduction . . . . . . . . . . . . . . . . 124 7.3.2 The DRBT Method . . . . . . . . . . . . . . . . . . . 125 7.4 Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 x Contents III Extended Data Publishing Scenarios 129 8 Multiple Views Publishing 131 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.2 Checking Violations of k-Anonymity on Multiple Views . . . 133 8.2.1 Violations by Multiple Selection-Project Views . . . . 133 8.2.2 Violations by Functional Dependencies . . . . . . . . . 136 8.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.3 Checking Violations with Marginals . . . . . . . . . . . . . . 137 8.4 MultiRelational k-Anonymity . . . . . . . . . . . . . . . . . . 140 8.5 Multi-Level Perturbation . . . . . . . . . . . . . . . . . . . . 140 8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9 Anonymizing Sequential Releases with New Attributes 143 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . 143 9.1.2 Anonymization Problem for Sequential Releases. . . . 147 9.2 Monotonicity of Privacy . . . . . . . . . . . . . . . . . . . . . 151 9.3 Anonymization Algorithm for Sequential Releases . . . . . . 153 9.3.1 Overview of the Anonymization Algorithm . . . . . . 153 9.3.2 Information Metrics . . . . . . . . . . . . . . . . . . . 154 9.3.3 (X,Y)-Linkability . . . . . . . . . . . . . . . . . . . . 155 9.3.4 (X,Y)-Anonymity . . . . . . . . . . . . . . . . . . . . 158 9.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10 Anonymizing Incrementally Updated Data Records 161 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10.2 Continuous Data Publishing . . . . . . . . . . . . . . . . . . 164 10.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . 164 10.2.2 Correspondence Attacks . . . . . . . . . . . . . . . . . 165 10.2.3 Anonymization Problem for Continuous Publishing . . 168 10.2.4 Detection of Correspondence Attacks. . . . . . . . . . 175 10.2.5 Anonymization Algorithm for Correspondence Attacks 178 10.2.6 Beyond Two Releases . . . . . . . . . . . . . . . . . . 180 10.2.7 Beyond Anonymity . . . . . . . . . . . . . . . . . . . . 181 10.3 Dynamic Data Republishing . . . . . . . . . . . . . . . . . . 181 10.3.1 Privacy Threats . . . . . . . . . . . . . . . . . . . . . 182 10.3.2 m-invariance . . . . . . . . . . . . . . . . . . . . . . . 183 10.4 HD-Composition . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Contents xi 11 Collaborative Anonymization for Vertically Partitioned Data 193 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 11.2 Privacy-PreservingData Mashup . . . . . . . . . . . . . . . . 194 11.2.1 Anonymization Problem for Data Mashup . . . . . . . 199 11.2.2 Information Metrics . . . . . . . . . . . . . . . . . . . 201 11.2.3 Architecture and Protocol . . . . . . . . . . . . . . . . 202 11.2.4 Anonymization Algorithm for Semi-Honest Model . . 204 11.2.5 Anonymization Algorithm for Malicious Model . . . . 210 11.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 217 11.3 Cryptographic Approach . . . . . . . . . . . . . . . . . . . . 218 11.3.1 Secure Multiparty Computation . . . . . . . . . . . . 218 11.3.2 Minimal Information Sharing . . . . . . . . . . . . . . 219 11.4 Summary and Lesson Learned . . . . . . . . . . . . . . . . . 220 12 Collaborative Anonymization for Horizontally Partitioned Data 221 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 12.2 Privacy Model . . . . . . . . . . . . . . . . . . . . . . . . . . 222 12.3 Overview of the Solution . . . . . . . . . . . . . . . . . . . . 223 12.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 IV Anonymizing Complex Data 227 13 Anonymizing Transaction Data 229 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 13.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . 229 13.1.2 The Transaction Publishing Problem . . . . . . . . . . 230 13.1.3 Previous Works on Privacy-PreservingData Mining . 231 13.1.4 Challenges and Requirements . . . . . . . . . . . . . . 232 13.2 Cohesion Approach . . . . . . . . . . . . . . . . . . . . . . . 234 13.2.1 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . 235 13.2.2 Item Suppression . . . . . . . . . . . . . . . . . . . . . 236 13.2.3 A Heuristic Suppression Algorithm . . . . . . . . . . . 237 13.2.4 Itemset-Based Utility . . . . . . . . . . . . . . . . . . 240 13.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 241 13.3 Band Matrix Method . . . . . . . . . . . . . . . . . . . . . . 242 13.3.1 Band Matrix Representation . . . . . . . . . . . . . . 243 13.3.2 Constructing Anonymized Groups . . . . . . . . . . . 243 13.3.3 Reconstruction Error. . . . . . . . . . . . . . . . . . . 245 13.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 246 13.4 km-Anonymization . . . . . . . . . . . . . . . . . . . . . . . . 247 13.4.1 km-Anonymity . . . . . . . . . . . . . . . . . . . . . . 247 13.4.2 Apriori Anonymization . . . . . . . . . . . . . . . . . 248 13.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 250

Description:
Gaining access to high-quality data is a vital necessity in knowledge-based decision making. But data in its raw form often contains sensitive information about individuals. Providing solutions to this problem, the methods and tools of privacy-preserving data publishing enable the publication of use
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.