ebook img

Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World PDF

575 Pages·2023·25.142 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World

Constantino Tsallis Introduction to Nonextensive Statistical Mechanics Approaching a Complex World Second Edition Introduction to Nonextensive Statistical Mechanics Constantino Tsallis Introduction to Nonextensive Statistical Mechanics Approaching a Complex World Second Edition ConstantinoTsallis CentroBrasileirodePesquisasFisicas RiodeJaneiro,Brazil ISBN 978-3-030-79568-9 ISBN 978-3-030-79569-6 (eBook) https://doi.org/10.1007/978-3-030-79569-6 1stedition:©SpringerScience+BusinessMedia,LLC2009 2ndedition:©SpringerNatureSwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Tomyfamily, whoseloveistherootsofmydreams Preface In 1902, after three decades that Ludwig Eduard Boltzmann formulated the first versionofstandardstatisticalmechanics,JosiahWillardGibbsshares,inthePreface of his superb Elementary Principles in Statistical Mechanics [1, 2, 3]: “Certainly, one is building on an insecure foundation ...”. After such words by Gibbs, it is, stilltoday,uneasytofeelreallycomfortableregardingthefoundationsofstatistical mechanicsfromfirstprinciples.SincethetimewhenItookthedecisiontowritethe presentbook,Iwouldcertainlysecondhiswords.Severalinterrelatedfactscontribute tothisinclination. First, the verification of the notorious fact that all branches of physics deeply related to the theory of probabilities, such as statistical mechanics and quantum mechanics, have exhibited, along history and up to now, endless interpretations, reinterpretations,andcontroversies.Allthisisfullycomplementedbyphilosophical andsociologicalconsiderations.Asoneamongmanyevidences,letusmentionthe eloquentwordsbyGregoireNicolisandDavidDaems[4]:“Itisthestrangeprivilege ofstatisticalmechanics tostimulate and nourishpassionate discussions related to itsfoundations,particularlyinconnectionwithirreversibility.Eversincethetimeof Boltzmann,ithasbeencustomarytoseethescientificcommunityvacillatingbetween extreme,mutuallycontradictingpositions.” Second,Iaminclinedtothinkthat,togetherwiththecentralgeometricalconcept of symmetry, virtually nothing more basically than energy and entropy deserves thequalificationofpillarsofmodernphysics.Bothconceptsareamazinglysubtle. However,energyhastodowithpossibilities,whereasentropywiththeprobabilities of those possibilities. Consequently, the concept of entropy is, epistemologically speaking,onestepfurther.Onemightremember,forinstance,theillustrativedialog that Claude Elwood Shannon had with John von Neumann [5, 6]: “My greatest concernwaswhattocallit.Ithoughtofcallingit‘information’,butthewordwas overlyused,soIdecidedtocallit‘uncertainty’.WhenIdiscusseditwithJohnvon Neumann,hehadabetteridea.VonNeumanntoldme,‘Youshouldcallitentropy,for tworeasons.Inthefirstplace,youruncertaintyfunctionhasbeenusedinstatistical mechanicsunderthatname,soitalreadyhasaname.Inthesecondplace,andmore important, nobody knows what entropy really is, so in a debate, you will always vii viii Preface havetheadvantage.’”.Frequentlywehearandreaddiversifiedopinionsaboutwhat shouldandwhatshouldnotbeconsideredas“thephysicalentropy”,itsconnections withheat,information,andsoon. Third,thedynamicalfoundationsofthestandard,Boltzmann-Gibbs(BG)statis- ticalmechanicsare,mathematicallyspeaking,not yetfullyestablished.Itisknown that, for classical systems, exponentially diverging sensitivity to the initial condi- tions(i.e.,positiveLyapunovexponentsalmosteverywhere,whichtypicallyimply mixing and ergodicity, properties that are consistent with Boltzmann’s celebrated StoszzahlAnsatz,“molecularchaoshypothesis”)isasufficientpropertyforhavinga meaningfulstatisticaltheory.Moreprecisely,oneexpectsthatthispropertyimplies, formany-bodyHamiltoniansystemsattainingthermalequilibrium,centralfeatures such as the celebrated exponential weight, introduced and discussed in the 1870s byLudwigBoltzmann(veryespeciallyinhis1872[7]and1877[8]papers)1 inthe so-called μ-space, thus recovering, as particular instance, the velocity distribution published in 1860 by James Clerk Maxwell [11]. More generally, the exponential divergence typically leads to the exponential weight in the full phase space, the so-called(cid:2)-spacefirstproposedbyGibbs.However,hypothesissuchasthisexpo- nentially diverging sensitivity, are they necessary? In the first place, are they, in some appropriate logical chain, necessary for having BG statistical mechanics? I wouldsayyes.Butaretheyalsonecessaryforhavingavalidstatisticalmechanical descriptionatallforanytypeofthermodynamic-likesystems?.2 Iwouldsayno.In any case, it is within this belief that I write the present book. All in all, if such is todaythesituationforthesuccessful,undoubtedlycorrectforaverywideclassof systems,universallyused,andcentennialBGstatisticalmechanicsanditsassociated thermodynamics(“asciencewithsecurefoundations,cleardefinitions,anddistinct boundaries” as so well characterized by James Clerk Maxwell), what can we then expect for its possible generalization only a few decades after its first proposal, in 1988? Fourth,—lastbutnotleast—nological-deductivemathematicalprocedureexists, norwillpresumablyeverexist,forproposinganewphysicaltheoryorforgeneral- izingapre-existingone.ItisenoughtothinkaboutNewtonianmechanics,whichhas already been generalized along at least two completely different (and compatible) paths, which eventually led to the theory of relativity and to quantum mechanics. Thisfactisconsistentwiththeevidencethatthereisnouniquewayofgeneralizing a coherent set of axioms. Indeed, the most obvious manner of generalizing it is to replaceoneormoreofitsaxiomswithweakerones.Andthiscanbedoneinmore than one manner, sometimes in infinite manners. So, if the prescriptions of logics andmathematicsarehelpfulonlyforanalyzingtheadmissibilityofagivengeneral- ization,howdogeneralizationsofphysicaltheories,orevenscientificdiscoveriesin 1Englishtranslationin[9];seealso[10]. 2Forexample,wecanreadinarecentpaperbyGiulioCasatiandTomazProsen[12]thefollowing sentence:“Whileexponentialinstabilityissufficientforameaningfulstatisticaldescription,itis notknownwhetherornotitisalsonecessary.” Preface ix general,occur?Throughalltypesofheuristicprocedures,butmainly—Iwouldsay— through methaphors [13]. Indeed, theoretical and experimental scientific progress occurs all the time through all types of logical and heuristic procedures, but the particularprogressinvolvedinthegeneralizationofaphysicaltheoryimmensely,if notessentially,reliesonsomekindofmetaphor.3Well-knownexamplesaretheidea of Erwin Schroedinger of generalizing Newtonian mechanics through a wave-like equationinspiredbythephenomenonofopticalinterference,andthediscoveryby FriedrichAugustKekuleofthecyclicstructureofbenzeneinspiredbytheshapeof themythologicalOuroboros.Inotherwords,generalizationsnotonlyusetheclas- sicallogicalproceduresofdeductionandinduction,butalso,andoverall,thespecific typeofinferencereferredtoasabduction(orabductivereasoning),whichplaysthe most central role in Charles Sanders Peirce’s semiotics. The procedures for theo- reticallyproposingageneralizationofaphysicaltheorysomehowcruciallyrelyon theconstructionofwhatonemaycallaplausiblescenario.Thescientificvalueand universal acceptability of any such a proposal are of course ultimately dictated by itssuccessfulverifiabilityinnaturaland/orartificialand/orsocialsystems.Having made all these considerations, I hope that it must by now be very transparent for the reader why, in the beginning of this Preface, I evoked Gibbs’ words about the fragilityofthebasisonwhichwearefounding. Newton’sdecompositionofwhitelightintorainbowcolors,notonlyprovideda deeperinsightintothenatureofwhatweknowtodaytoclassicallybeelectromag- netic waves, but also opened the door to the discovery of infrared and ultraviolet. Whiletryingtofollowthemethodsofthisgreatmaster,itismycherishedhopethat thepresent,nonextensivegeneralizationofBoltzmann–Gibbsstatisticalmechanics, mayprovideadeeperunderstandingofthestandardtheory,inadditiontoproposing someextensionofthedomainofapplicabilityofthepowerfulmethodsofstatistical mechanics. The book is written at a graduate course level, and some basic knowl- edgeofquantumandstandardstatisticalmechanics,aswellasthermodynamics,is assumed.Thestyleis,however,slightlydifferentfromaconventionaltextbook,in the sense that not all the results that are presented are proved. The quick ongoing developmentofthefielddoesnotyetallowforsuchanambitioustask.Variouspoints ofthetheoryarepresentlyonlypartiallyknownandunderstood.So,hereandthere weareobligedtoproceedwithheuristicarguments.Thebookisunconventionalalso inthesensethathereandtherehistoricalandothersideremarksareincludedaswell. Some sections of the book, the most basic ones, are presented with all details and intermediatesteps;someothers,moreadvancedorquitelengthy,arepresentedonly throughtheirmainresults,andthereaderisreferredtotheoriginalpublicationsto knowmore.Wehope,however,thataunifiedperceptionofstatisticalmechanics,its background,anditsbasicconceptsdoesemerge. Thebookisorganizedintofourparts,namelyPartI—BasicsorHowtheTheory Works, Part II—Foundations or Why the Theory Works, Part III—Applications or WhatfortheTheoryWorks,andPartIV—Last(ButNotLeast).Thefirstpartconsti- tutesapedagogicalintroductiontothetheoryanditsbackground(Chaps.1–3).The 3IwasfirstledtothinkaboutthisbyRoaldHoffmannin1995. x Preface secondpartcontainsthestateoftheartinitsdynamicalfoundations,inparticularhow theindex(indices)qcanbeobtained,insomeparadigmaticcases,frommicroscopic firstprinciplesor,alternatively,frommesoscopicprinciples(Chaps.4–6).Thethird partisdedicatedtolistingbriefpresentationsoftypicalapplicationsofthetheoryand itsconcepts,oratleastofitsfunctionalforms,aswellaspossibleextensionsexisting intheliterature(Chap.7).Finally,thefourthpartconstitutesanattempttoplacethe present—intensively evolving, open to further contributions and insights4—theory into contemporary science, by addressing some frequently asked or still unsolved currentissues(Chap.8).AnAppendixwithusefulformulaehasbeenaddedatthe end,aswellasanotheronediscussingescortdistributionsandq-expectationvalues. It may be useful to point out at this stage that this book can be quite conve- nientlyreadalongtwopossibletracks.Thefirsttrackconcernsreadersatagraduate student level. It basically consists of reading Chaps. 1, 2, 3, 5, and 8. The second trackconcernsreadersattheresearchlevelwithsomepracticeinstandardstatistical mechanicalmethods.ItbasicallyconsistsofreadingChaps.3–8.Forbothtracks,let usemphasizethatChap.7containsalargeamountofdiversifiedapplications.The reader may focus on those of his/her main preference. In the present new edition, we have refined some concepts, included some recent analytical discussions, and addedaconsiderablenumberofapplicationsaswellasexperimentalandnumerical verifications.Letusmentionalsothatithasbeenunfortunatelyimpossibletounify thenotationsalongallthechaptersofthebook,duetothefactthatverymanyfigures havebeenreproducedfromalargenumberofpapersintheliterature. Towardthisend,itisagenuinepleasuretowarmlyacknowledgethecontributions ofM.Gell-Mann,maîtreàpenser,withwhomIhavehadfrequentanddelightfully deepconversationsonthesubjectofnonextensivestatisticalmechanics...aswellas onmanyothers.Manyotherfriendsandcolleagueshavesubstantiallycontributedto theideas,results,andfigurespresentedinthisbook.Thosecontributionsrangefrom insightfulquestionsorremarks—sometimesfairlycritical—toentiremathematical developments and seminal ideas. Their natures are so diverse that it becomes an impossible task to duly recognize them all. So, faute de mieux, I decided to name theminalphabeticalorder,beingcertainthatIambynomeansdoingjusticetotheir enormousanddiversifiedintellectualimportance.Inallcases,mygratitudecouldnot bedeeper.TheyareS.Abe,F.C.Alcaraz,R.F.Alvarez-Estrada,S.Amari,G.F.J. Ananos,C.Anteneodo,V.Aquilanti,N.Ay,G.BakerJr.,F.Baldovin,M.Baranger, G.G.Barnafoldi,C.Beck,I.Bediaga,G.Bemski,T.S.Biro,A.R.Bishop,H.Blom, B.M.Boghosian,E.Bonderup,J.P.Boon,E.P.Borges,L.Borland,T.Bountis,E. Brezin,A.Bunde,L.F.Burlaga,B.J.C.Cabral,M.O.Caceres,S.A.Cannas,A. Carati,F.Caruso,M.Casas,G.Casati,N.Caticha,A.Chame,P.-H.Chavanis,C.E. Cedeño,L.J.L.Cirto,J.Cleymans,E.G.D.Cohen,A.Coniglio,M.CoutinhoFilho, E.M.F.Curado,S.Curilef,J.S.Dehesa,S.A.Dias,A.Deppman,A.Erzan,L.R. Evangelista,J.D.Farmer,R.Ferreira,M.A.Fuentes,L.Galgani,J.P.Gazeau,P.-G. deGennes,A.Giansanti,A.Greco,P.Grigolini,D.H.E.Gross,G.R.Guerberoff, E.Guyon,M.Hameeda,R.Hanel,H.J.Haubold,R.Hersh,H.J.Herrmann,H.J. 4Foraregularlyupdatedbibliographyofthesubjectseehttp://tsallis.cat.cbpf.br/biblio.htm. Preface xi Hilhorst,R.Hoffmann,G.‘tHooft,K.Huang,M.Jauregui,H.J.Jensen,P.Jizba,L. P.Kadanoff,G.Kaniadakis,T.A.Kaplan,S.Kawasaki,J.Korbel,D.Krakauer,P.T. Landsberg,V.Latora,C.M.Lattes,E.K.Lenzi,S.V.F.Levy,H.S.Lima,J.A.S. Lima,M.L.Lyra,S.D.Mahanti,A.M.Mariz,J.Marsh,A.M.Mathai,R.Maynard, G.F.Mazenko,E.Megias,R.S.Mendes,L.C.Mihalcea,L.G.Moyano,J.Naudts, K.P.Nelson,G.Nicolis,F.D.Nobre,J.Nogales,F.A.Oliveira,P.M.C.Oliveira,I. Oppenheim,A.W.Overhauser,G.Parisi,R.Pasechnik,G.P.Pavlos,R.Piasecki,A. Plastino,A.R.Plastino,A.Pluchino,D.Prato,P.Quarati,S.M.D.Queiros,A.K. Rajagopal,A.Rapisarda,M.A.Rego-Monteiro,M.S.Ribeiro,A.Robledo,M.C. Rocca,A.Rodriguez,S.Ruffo,G.Ruiz,M.Rybczynski,S.R.A.Salinas,Y.Sato,V. Schwammle,L.Silva,L.R.daSilva,R.N.Silver,I.D.Soares,A.M.C.Souza,H. E.Stanley,D.A.Stariolo,D.Stauffer,S.Steinberg,R.Stinchcombe,H.Suyari,F. Vallianatos,H.L.Swinney,F.A.Tamarit,P.Tempesta,W.J.Thistleton,S.Thurner, U.Tirnakli,L.Tisza,F.Topsoe,R.Toral,A.C.Tsallis,A.F.Tsallis,E.L.P.Tsallis,F. TsallisViegas,S.Umarov,P.Van,M.E.Vares,M.C.S.Vieira,C.Vignat,J.Villain, A.F.Vinas,S.Vinciguerra,G.Viswanathan,R.S.Wedemann,B.Widom,G.Wilk, H.O.Wio,Z.Wlodarczyk,D.J.Zamora,andI.I.Zovko.Unavoidably,Imusthave forgottentomentionsome—thisideastarteddevelopingoverthreedecadesago!—to themmymostgenuineapologiesandgratitude.Finally,asinvirtuallyallthefieldsof scienceandveryespeciallyduringthefirststagesofanynewdevelopment,thereare alsoafewcolleagueswhoseintentionshavenotbeen—Iconfess—verytransparent to me. But they have nevertheless—perhaps even unwillingly—contributed to the progressoftheideasthatarepresentedinthisbook.Theysurelyknowwhotheyare. My gratitude goes to them as well: it belongs to human nature to generate fruitful ideasthroughalltypesofpaths. Along the years, I have relevantly benefited from the partial financial support ofvariousAgencies,especiallytheBrazilianCNPq,FAPERJ,PRONEX/MCT,and CAPES,theUSANSF,SFI,SIInternational,AFRL,andJohnTempletonFoundation, theItalianINFNandINFM,amongothers.Iamindebtedtoallofthem. Finally,someofthefiguresthatarepresentedinthepresentbookhavebeenrepro- ducedfromvariouspublicationsindicatedcasebycase.Igratefullyacknowledgethe graciousauthorizationtodosofromtheirauthors. RiodeJaneiro,Brazilthroughtheperiods2004–2009and2018–2023 RiodeJaneiro,Brazil ConstantinoTsallis

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.