m o c c. ntifi e ci s d orl w w. m wwonly. oe ed fral us dn ao os nler wp DoFor ory 17. Field Theon 08/21/ s 9 Clas53.5 n 1. a1 n-Abeliby 78.1 o N o n t o cti u d o ntr n I A Series on Number Theory and Its Applications* ISSN 1793-3161 Series Editor: Shigeru Kanemitsu (Kindai University, Japan) Editorial Board Members: V. N. Chubarikov (Moscow State University, Russian Federation) Christopher Deninger (Universität Münster, Germany) Chaohua Jia (Chinese Academy of Sciences, PR China) Jianya Liu (Shangdong University, PR China) H. Niederreiter (RICAM, Austria) m o c c. Advisory Board: ntifi A. Schinzel (Polish Academy of Sciences, Poland) e sci M. Waldschmidt (Université Pierre et Marie Curie, France) d orl w w. m wwonly. Published oe ed fral us Vol. 7 Geometry and Analysis of Automorphic Forms of Several Variables dn Proceedings of the International Symposium in Honor of Takayuki Oda ao os nler on the Occasion of His 60th Birthday wp DoFor edited by Yoshinori Hamahata, Takashi Ichikawa, Atsushi Murase & ory 17. Takashi Sugano Field Theon 08/21/ V ol. 8 NPruomcebeedri nTghse oorfy t:h Ae r6itthh mCehtiinca i–nJ Saphaann gSrei-mLianar Class 53.59 edited by S. Kanemitsu, H.-Z. Li & J.-Y. Liu n 1. Vol. 9 Neurons: A Mathematical Ignition a1 n-Abeliby 78.1 by Masayoshi Hata o Vol. 10 Contributions to the Theory of Zeta-Functions: The Modular N o Relation Supremacy n t o by S. Kanemitsu & H. Tsukada cti u od Vol. 11 Number Theory: Plowing and Starring Through High Wave Forms n Intr Proceedings of the 7th China–Japan Seminar A edited by Masanobu Kaneko, Shigeru Kanemitsu & Jianya Liu Vol. 12 Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values by Jianqiang Zhao Vol. 13 An Introduction to Non-Abelian Class Field Theory: Automorphic Forms of Weight 1 and 2-Dimensional Galois Representations by Toyokazu Hiramatsu & Seiken Saito *For the complete list of the published titles in this series, please visit: www.worldscientific.com/series/sntia LaiFun - An Introduction to Non-Abelian Class Field Theory.indd 1 25-08-16 9:11:34 AM m o c c. ntifi e ci s d orl w w. m wwonly. oe ed fral us dn ao os nler wp DoFor ory 17. Field Theon 08/21/ s 9 Clas53.5 n 1. a1 n-Abeliby 78.1 o N o n t o cti u d o ntr n I A Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE m o c c. ntifi e ci s d worl British Library Cataloguing-in-Publication Data w. A catalogue record for this book is available from the British Library. m wwonly. oe ed fral us Book cover: The artwork “Circle, Triangle and Square (The Universe)” by Sengai, Edo period. dn oaso Courtesy of Idemitsu Museum of Arts. nler wp DoFor ory 17. Field Theon 08/21/ SAAeuNrti oe ImsN ooTnrR pNhOuicDm FUboeCrrmT TIsh OoefoN rW y T eaOign hd Nt I O1ts aN An-pdAp B2l-iEcDaLitmiIoAennNss i— oCn LVaAlo GlS. a1Sl3 o FisI ERLepDr e TseHnEtaOtiRonYs Class 53.59 Copyright © 2017 by World Scientific Publishing Co. Pte. Ltd. n 1. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, a1 n-Abeliby 78.1 esylesctetrmo nniocw o rk nmoewchna onri ctoa lb, ein icnlvuednintegd p, hwoitthoocoupt ywinrigtt,e rne cpoerrdminisgs ioorn a fnryo min ftohrem pautbiolins hsetor.rage and retrieval o N o n t o cti u d For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance o ntr Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy n I is not required from the publisher. A ISBN 978-981-3142-26-8 Printed in Singapore LaiFun - An Introduction to Non-Abelian Class Field Theory.indd 2 19-08-16 5:18:20 PM August16,2016 15:15 ws-book9x6 AnIntroductiontoNon-AbelianClassFieldTheory ws-book9x6 pagev m o c c. ntifi e ci s d orl Dedicated to Tomio Kubota w w. m wwonly. oe ed fral us dn ao os nler wp DoFor ory 17. Field Theon 08/21/ s 9 Clas53.5 n 1. a1 n-Abeliby 78.1 o N o n t o cti u d o ntr n I A v May2,2013 14:6 BC:8831-ProbabilityandStatisticalTheory PST˙ws m TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk o c c. ntifi e ci s d orl w w. m wwonly. oe ed fral us dn ao os nler wp DoFor ory 17. Field Theon 08/21/ s 9 Clas53.5 n 1. a1 n-Abeliby 78.1 o N o n t o cti u d o ntr n I A August19,2016 17:15 ws-book9x6 AnIntroductiontoNon-AbelianClassFieldTheory ws-book9x6 pagevii Preface m o c c. ntifi e ci s d orl w This monograph is intended to provide a brief exposition of the theory of w. m wwonly. athuetoomutosrtpahnidcifnogrmprsoobflewmesigihnta1riatnhdmtehtiecirisaptoplgiceanteiroanlisziencalarsitshfimeeldticth.eOornyetoof oe ded frnal us nporonp-aobseedliabnyGTaakloaigsieinxtheinsstiaolnksaotftnhuemStbrearsbfioeuldrsg.CTohnigsrpesrso,b1l9em20.wSaisgnalirfiecaadnyt ao os nler progress has been made in recent years by Langlands and others. In the wp DoFor monograph,wediscusssomeoftherelationsbetweenthisproblemandcusp ory 17. forms of weight 1. Field Theon 08/21/ tersT1heanmdo2n,owgreadpihsccuosnsshisitgsheorfrneicnieprcohcaitpytelraswasnadndanaraitphpmenetdiicx.coInngrCuhenapce- s 9 relations for (non-abelian) dihedral polynomials. In addition, Chapter 1 Clas53.5 contains an overview of modular forms and Hecke operators. Chapter 3 n 1. a1 will be devoted to the study of Hecke’s indefinite modular forms of weight on-Abeliby 78.1 1se,raiensd. a relation between positive definite theta series and indefinite theta N o LetΓ beafuchsiangroupofthefirstkindandletd bethedimensionof n t 1 o thelinearspaceofcuspformsofweight1onthegroupΓ. Itisnoteffective cti odu tocomputethenumberd1 bymeansoftheRiemann-Rochtheorem. Inthe An Intr fitrnaaclecfhoarmptuelra,ofanPdaratlsIo,dwiescguisvseds1ommoedf2o.rmula for d1 by using the Selberg The first chapter of Part II contains a very remarkable account of var- ious aspects of the theory including Galois representations of odd type, the Artin conjecture, the Langlands program, base change and icosahedral representations. In Chapter 6, we discuss some relations between Maass cusp forms and Galois representations of even type. We also introduce some aspects of automorphic hyperfunctions of weight 1 related to Hecke’s theta series. Chapter 7 begins with reviewing some basic facts concerning vii August16,2016 15:15 ws-book9x6 AnIntroductiontoNon-AbelianClassFieldTheory ws-book9x6 pageviii viii An Introduction to Non-Abelian Class Field Theory five conjectures in arithmetic, and we discuss some relations between these conjectures. In Chapter 8, we describe a family of modular series associ- ated with indefinite binary quadratic forms. These series introduced by Polishchuk generate the same space of weight 1 modular forms as Hecke’s indefinite theta series. The dimension of the space of Hilbert modular type cusp forms has been calculated in most of cases, but not yet for the case of weight 1. In m Chapter 9, we shall discuss the dimension for this remaining case. Let K o c.c be a real quadratic field and OK be the ring of integers in K. By the ntifi technical reason, we assume that the class number of K is equal to 1. The e ci purpose of this chapter is more precisely to study the dimension for the s d orl Hilbert modular type cusp forms of weight 1 with respect to the Hilbert w w. modular group SL2(OK) through Selberg’s trace formula. m wwonly. The articles in the Appendix are the reproduction of a manuscript re- oe lated to the first author’s G¨ottingen talk. ed fral us adon Kobe Toyokazu Hiramatsu os nler Tokyo Seiken Saito wp DoFor June, 2015 ory 17. Field Theon 08/21/ s 9 Clas53.5 n 1. a1 n-Abeliby 78.1 o N o n t o cti u d o ntr n I A August16,2016 15:15 ws-book9x6 AnIntroductiontoNon-AbelianClassFieldTheory ws-book9x6 pageix Contents m o c c. ntifi e ci s d orl w w. Preface vii m wwonly. oe ed fral us Part I 1 dn ao os nler 1. Higher reciprocity laws 3 wp DoFor 1.1 Some examples of non-abelian case . . . . . . . . . . . . . 4 ory 17. 1.1.1 f(x)=x3−d . . . . . . . . . . . . . . . . . . . . 4 Field Theon 08/21/ 11..11..23 ff((xx))==x4x43−−24xx22++21. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 193 n Class 1.53.59 1.2 M1.2o.d1ularSLfo2r(mZs)aannddHitescckoenogpruereantcoerssub.gr.o.up.s. .. .. .. .. .. .. .. 1155 a1 n-Abeliby 78.1 11..22..23 TMhoeduulpaprefrorhmalsf-apnladnceus.p.fo.rm. s. .. .. .. .. .. .. .. .. .. .. .. 1167 o N 1.2.4 Hecke operators . . . . . . . . . . . . . . . . . . . 18 o n t ctio 2. Hilbert class fields over imaginary quadratic fields 21 u d o 2.1 The classical theory of complex multiplication . . . . . . . 21 ntr n I 2.2 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . 24 A 2.3 Schl¨afli’s modular equation . . . . . . . . . . . . . . . . . 29 2.4 The case of q =47 . . . . . . . . . . . . . . . . . . . . . . 30 3. Indefinite modular forms 37 3.1 Hecke’s indefinite modular forms of weight 1 . . . . . . . . 38 3.2 Ray class fields over real quadratic fields . . . . . . . . . . 38 3.3 Positive definite and indefinite modular forms of weight 1 40 3.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . 44 ix August16,2016 15:15 ws-book9x6 AnIntroductiontoNon-AbelianClassFieldTheory ws-book9x6 pagex x An Introduction to Non-Abelian Class Field Theory 3.5 Higher reciprocity laws for some real quadratic fields . . . 51 3.6 Cusp forms of weight 1 related to quartic residuacity . . . 53 3.7 Fundamental lemmas . . . . . . . . . . . . . . . . . . . . . 57 3.8 Three expressions of Θ(τ; K) . . . . . . . . . . . . . . . . 60 4. Dimension formulas in the case of weight 1 67 4.1 The Selberg eigenspace M(k,λ) . . . . . . . . . . . . . . . 67 m 4.2 The compact case . . . . . . . . . . . . . . . . . . . . . . . 71 o c ntific. 4.3 T4.h3e.1ArfTinhveaAriarfntinavnadriadn1tmoofdq2uad.r.at.ic.fo.r.m.s.m.o.d2. .. .. .. .. 7766 e sci 4.3.2 The Atiyah invariant on spin structures . . . . . . 78 d orl 4.3.3 The Arf invariant and d mod2 . . . . . . . . . . . 80 w 1 w. 4.4 The finite case 1 (: Γ (cid:54)(cid:51)−I) . . . . . . . . . . . . . . . . 82 m wwonly. 4.5 The finite case 2 (: Γ (cid:51)−I) . . . . . . . . . . . . . . . . 86 ed froal use 4.6 The case of Γ0(p) . . . . . . . . . . . . . . . . . . . . . . . 88 dn ao os nler DowFor p Part II 91 s Field Theory 9 on 08/21/17. 5. 2n5-.o1dni-mdeiGhneasdlioorinaslarlceupGsrpaelsfoeoinsrtmarsteipoornfeswseoenfigtoahdttido1ntsypoef o.d.d.ty.p.e.a.n.d. . . . . 9933 Clas53.5 5.1.1 Artin L-functions and the Artin conjecture . . . . 93 an 11. 5.1.2 2-dimensional Galois representations of odd type n-Abeliby 78.1 5.2 The caseanodf ttyhpeeLsaAnglaannddsSp:roBgraasme c.ha.n.ge. t.he.o.ry. .. .. .. .. .. 9984 o 4 4 N o 5.2.1 Results of Serre-Tate . . . . . . . . . . . . . . . . 98 ction t 5.2.2 Base change for GL2 . . . . . . . . . . . . . . . . . 98 u 5.2.3 The case of types A and S . . . . . . . . . . . . 99 d 4 4 o ntr 5.3 The case of type A5 . . . . . . . . . . . . . . . . . . . . . 101 n I 5.3.1 The first example due to Buhler . . . . . . . . . . 101 A 5.3.2 Icosahedral Artin representations . . . . . . . . . 102 5.4 The Serre conjecture . . . . . . . . . . . . . . . . . . . . . 103 5.5 The Stark conjecture in the case of weight 1 . . . . . . . . 104 5.5.1 The Stark conjecture . . . . . . . . . . . . . . . . 104 (cid:18) (cid:19) 1 5.5.2 The value of L , ε . . . . . . . . . . . . . . . 105 2 6. Maass cusp forms of eigenvalue 1/4 107
Description: