InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 Introduction to NeutroRings AgboolaA.A.A. DepartmentofMathematics,FederalUniversityofAgriculture,Abeokuta,Nigeria. [email protected] Abstract The objective of this paper is to introduce the concept of NeutroRings by considering three NeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication over addition)). Several interesting results and examples on NeutroRings, NeutroSubgrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomomorphisms are presented. It is shown that the 1st isomorphism theoremoftheclassicalringsholdsintheclassofNeutroRings. Keywords: Neutrosophy,NeutroGroup,NeutroSubgroup,NeutroRing,NeutroSubring,NeutroIdeal,Neutro- QuotientRingandNeutroRingHomomorphism. 1 Introduction Theconceptofneutrosophiclogic/setintroducedbySmarandache25 isageneralizationoffuzzylogic/setin- troducedbyZadeh30 andintuitionisticfuzzylogic/setintroducedbyAtanasov.14 Inneutrosophiclogic,each propositionischaracterizedbytruthvalueinthesetT,indeterminacyvalueinthesetI andfalsehoodvalue in the set F where T,I,F are standard or nonstandard of the subsets of the nonstandard interval ]−0,1+[ where −0 ≤ infT +infI +infF ≤ supT +supI +supF ≤ 3+. Statically, T,I,F are subsets, but dynamically,thecomponentsofT,I,F areset-valuedvectorfunctions/operatorsdependingonmanyparam- eters some of which may be hidden or unknown. Neutrosophic logic/set has several real life applications in sciences, engineering, technology and social sciences. The concept has been used in medical diagnosis and multipledecision-making.15,18,29 Neutrosophicsethasbeenusedandappliedinseveralareasofmathematics. Forinstanceinalgebra,neutrosophicsethasbeenusedtodevelopneutrosophicgroups,rings,vectorspaces, modules, hypergroups, hyperrings, hypervector spaces, hypermodules, etc.1,2,4,5,7–13,16,17,27,28 In analysis, neutrosophicsethasbeenusedtodevelopneutrosophictopologicalspaces22–24andmanyotherareasofmath- ematical analysis. The concept of neutrosophic logic/set is now well known and embraced in many parts of world.Manyresearcheshavebeenconductedonneutrosophiclogic/setandseveralpapershavebeenpublished in many international journals by many neutrosophic researchers scattered all over the world. Neutrosophic Sets and Systemsand International Journal of Neutrosophic Scienceare presently two international journals dedicatedtopublicationofresearcharticlesinneutrosophiclogic/set. Smarandache19recentlyintroducednewfieldsofresearchinneutrosophycalledNeutroStructuresandAn- tiStructuresrespectively. In,20SmarandacheintroducedtheconceptsofNeutroAlgebrasandAntiAlgebrasand in,21herevisitedtheconceptofNeutroAlgebrasandAntiAlgebraswherehestudiedPartialAlgebras,Universal Algebras,EffectAlgebrasandBoole’sPartialAlgebrasandheshowedthatNeutroAlgebrasaregeneralization ofPartialAlgebras.MotivatedbytheworksofSmarandachein,19–21Agboolaetalin6studiedNeutroAlgebras and AntiAlgebras viz-a-viz the classical number systems N, Z, Q, R and C. Also motivated by the work of Smarandachein,19Agboola3formallyintroducedtheconceptofNeutroGroupbyconsideringthreeNeutroAx- ioms(NeutroAssociativity,existenceofNeutroNeutralelementandexistenceofNeutroInverseelement). In,3 AgboolastudiedNeutroSubgroups,NeutroCyclicGroups,NeutroQuotientGroupsandNeutroGroupHomomor- phisms. Severalinterestingresultsandexampleswerepresentedanditwasshownthatgenerally,Lagrange’s theoremand1stisomorphismtheoremoftheclassicalgroupsdonotholdintheclassofNeutroGroups.Incon- tinuationoftheworkstartedin,3thepresentpaperisdevotedtothepresentationoftheconceptofNeutroRing by considering three NeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and Doi:10.5281/zenodo.3877121 62 InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 NeutroDistributivity(multiplicationoveraddition)). SeveralinterestingresultsandexamplesonNeutroRings, NeutroSubgrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomomorphisms are presented. It is shownthatthe1stisomorphismtheoremoftheclassicalringsholdsintheclassofNeutroRings. 2 Preliminaries Inthissection,wewillgivesomedefinitions,examplesandresultsthatwillbeusefulinothersectionsofthe paper. Definition2.1. 21 (i) A classical axiom defined on a nonempty set is an axiom that is totally true (i.e. true for all set’s elements). (ii) ANeutroAxiom(orNeutrosophicAxiom)definedonanonemptysetisanaxiomthatistrueforsome set’selements[degreeoftruth(T)],indeterminateforotherset’selements[degreeofindeterminacy(I)], orfalsefortheotherset’selements[degreeoffalsehood(F)],whereT,I,F ∈ [0,1],with(T,I,F) (cid:54)= (1,0,0)thatrepresentstheclassicalaxiom,and(T,I,F)(cid:54)=(0,0,1)thatrepresentstheAntiAxiom. (iii) AnAntiAxiomdefinedonanonemptysetisanaxiomthatisfalseforallset’selements. Therefore,wehavetheneutrosophictriplet: <Axiom,NeutroAxiom,AntiAxiom>. Definition2.2. 3 LetGbeanonemptysetandlet∗ : G×G → GbeabinaryoperationonG. Thecouple (G,∗)iscalledaNeutroGroupifthefollowingconditionsaresatisfied: (i) ∗isNeutroAssociativethatisthereexistsatleastonetriplet(a,b,c)∈Gsuchthat a∗(b∗c)=(a∗b)∗c (1) andthereexistsatleastonetriplet(x,y,z)∈Gsuchthat x∗(y∗z)(cid:54)=(x∗y)∗z. (2) (ii) ThereexistsaNeutroNeutralelementinGthatisthereexistsatleastanelementa∈Gthathasasingle neutralelementthatiswehavee∈Gsuchthat a∗e=e∗a=a (3) andforb∈Gtheredoesnotexiste∈Gsuchthat b∗e=e∗b=b (4) orthereexiste ,e ∈Gsuchthat 1 2 b∗e = e ∗b=b or (5) 1 1 b∗e = e ∗b=b with e (cid:54)=e (6) 2 2 1 2 (iii) There exists a NeutroInverse element that is there exists an element a ∈ G that has an inverse b ∈ G withrespecttoaunitelemente∈Gthatis a∗b=b∗a=e (7) orthereexistsatleastoneelementb ∈ Gthathastwoormoreinversesc,d ∈ Gwithrespecttosome unitelementu∈Gthatis b∗c = c∗b=u (8) b∗d = d∗b=u. (9) Doi:10.5281/zenodo.3877121 63 InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 Inaddition,if∗isNeutroCommutativethatisthereexistsatleastaduplet(a,b)∈Gsuchthat a∗b=b∗a (10) andthereexistsatleastaduplet(c,d)∈Gsuchthat c∗d(cid:54)=d∗c, (11) then(G,∗)iscalledaNeutroCommutativeGrouporaNeutroAbelianGroup. Ifonlycondition(i)issatisfied,then(G,∗)iscalledaNeutroSemiGroupandifonlyconditions(i)and(ii) aresatisfied,then(G,∗)iscalledaNeutroMonoid. Example2.3. 3 LetU={a,b,c,d,e,f}beauniverseofdiscourseandletG={a,b,c,d}beasubsetofU. Let∗beabinaryoperationdefinedonGasshownintheCayleytablebelow: ∗ a b c d a b c d a b c d a c . c d a b d d a b c a Then(G,∗)isaNeutroAbelianGroup. Example2.4. 3LetG=Z andlet∗beabinaryoperationonGdefinedbyx∗y =x+2yforallx,y ∈G 10 where(cid:48)(cid:48)+(cid:48)(cid:48)isadditionmodulo10. Then(G,∗)isaNeutroAbelianGroup. Definition2.5. 3 Let(G,∗)beaNeutroGroup. AnonemptysubsetH ofGiscalledaNeutroSubgroupofG if(H,∗)isalsoaNeutroGroup. TheonlytrivialNeutroSubgroupofGisG. Example2.6. 3 Let(G,∗)betheNeutroGroupofExample2.3andletH = {a,c,d}. Thecompositionsof elementsofH aregivenintheCayleytablebelow. ∗ a c d a b d a . c d b d d a c a Then,H isaNeutroSubgroupofG. Definition 2.7. 3 Let (G,∗) and (H,◦) be any two NeutroGroups. The mapping φ : G → H is called a homomorphismifφpreservesthebinaryoperations∗and◦thatisifforallx,y ∈G,wehave φ(x∗y)=φ(x)◦φ(y). (12) ThekernelofφdenotedbyKerφisdefinedas Kerφ={x:φ(x)=e } (13) H wheree ∈H issuchthatN =e foratleastoneh∈H. H h H TheimageofφdenotedbyImφisdefinedas Imφ(x)={y ∈H :y =φ(x) forsome h∈H}. (14) Ifinadditionφisabijection,thenφisanisomorphismandwewriteG∼=H. Theorem2.8. 3 Let(G,∗)and(H,◦)beNeutroGroupsandletN =e suchthate ∗x=x∗e =xfor x G G G atleastonex ∈ GandletN = e suchthate ∗y = y∗e = y foratleastoney ∈ H. Supposethat y H H H φ:G→H isaNeutroGrouphomomorphism. Then: (i) φ(e )=e . G H (ii) KerφisaNeutroSubgroupofG. Doi:10.5281/zenodo.3877121 64 InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 (iii) ImφisaNeutroSubgroupofH. (iv) φisinjectiveifandonlyifKerφ={e }. g Theorem2.9. 3 LetH beaNeutroSubgroupofaNeutroGroup(G,∗). Themappingψ : G → G/H defined by ψ(x)=xH ∀x∈G isaNeutroGrouphomomorphismandtheKerψ (cid:54)=H. Theorem2.10. 3 Letφ : G → H beaNeutroGrouphomomorpismandletK = Kerφ. Thenthemapping ψ :G/K →Imφdefinedby ψ(xK)=φ(x) ∀x∈G isaNeutroGroupepimorphismandnotanisomorphism. 3 Development of NeutroRings and their Properties ThenewconceptofNeutroRingisdevelopedandstudiedinthissectionbyconsideringthreeNeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication overaddition)). Severalinterestingresultsandexamplesarepresented. Definition3.1. (a) ANeutroRing(R,+,.)isaringstructurethathasatleastoneNeutroOperationamong (cid:48)(cid:48)+(cid:48)(cid:48) and(cid:48)(cid:48).(cid:48)(cid:48) oratleastoneNeutroAxiom. Therefore,therearemanycasesofNeutroRing,depending onthenumberofNeutroOperationsandNeutroAxioms,andwhichofthemareNeutro-Sophicated. Forthepurposesofthispaper,thefollowingdefinitionofaNeutroRingwillbeadopted: (b) Let R be a nonempty set and let +,. : R ×R → R be binary operations of ordinary addition and multiplicationonR. Thetriple(R,+,.)iscalledaNeutroRingifthefollowingconditionsaresatisfied: (i) (R,+)isaNeutroAbelianGroup. (ii) (R,.)isaNeutroSemiGroup. (iii) (cid:48)(cid:48).(cid:48)(cid:48)isbothleftandrightNeutroDistributiveover(cid:48)(cid:48)+(cid:48)(cid:48)thatisthereexistsatleastatriplet(a,b,c)∈ Randatleastatriplet(d,e,f)∈Rsuchthat a.(b+c) = a.b+a.c (15) (b+c).a = b.a+c.a (16) d.(e+f) (cid:54)= d.e+d.f (17) (e+f).d (cid:54)= e.d+f.d. (18) If(cid:48)(cid:48).(cid:48)(cid:48)isNeutroCommutative,then(R,+,.)iscalledaNeutroCommutativeRing. Wewillsometimeswritea.b=ab. Definition3.2. Let(R,+,.)beaNeutroRing. (i) RiscalledafiniteNeutroRingofordernifthenumberofelementsinRisnthatiso(R) = n. Ifno suchnexists,thenRiscalledaninfiniteNeutroRingandwewriteo(R)=∞. (ii) RiscalledaNeutroRingwithNeutroUnityifthereexistsamultiplicativeNeutroUnityelementu ∈ R suchthatux=xu=xthatisU =uforatleastonex∈R. x (iii) If there exists a least positive n such that nx = e for at least one x ∈ R where e is an additive NeutroElement in R, then R is called a NeutroRing of characteristic n. If no such n exists, then R is calledaNeutroRingofcharacteristicNeutroZero. (iv) Anelementx∈RiscalledaNeutroIdempotentelementifx2 =x. (v) An element x ∈ R is called a NeutroINilpotent element if for the least positive integer n, we have xn =ewhereeisanadditiveNeutroNeutralelementinR. (vi) Anelemente(cid:54)=x∈RiscalledaNeutroZeroDivisorelementifthereexistsanelemente(cid:54)=y ∈Rsuch thatxy =eoryx=ewhereeisanadditiveNeutroNeutralelementinR. Doi:10.5281/zenodo.3877121 65 InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 (vii) An element x ∈ R is called a multiplicative NeutroInverse element if there exists at least one y ∈ R suchthatxy =yx=uwhereuisthemultiplicativeNeutroUnityelementinR. Definition3.3. Let(R,+,.)beaNeutroCommutativeRingwithNeutroUnity. Then (i) RiscalledaNeutroIntegralDomainifRhasnoatleastoneNeutroZeroDivisorelement. (ii) RiscalledaNeutroFieldifRhasatleastoneNeutroInverseelement. Example3.4. LetX={a,b,c,d}beauniverseofdiscourseandletR={a,b,c}beasubsetofX. Let(cid:48)(cid:48)+(cid:48)(cid:48) and(cid:48)(cid:48).(cid:48)(cid:48)bebinaryoperationsdefinedonRasshownintheCayleytablesbelow: + a b c . a b c a a b b a a a a b c a c b a c a c b c a c a c b Itisclearfromthetablethat: c+(b+c) = (c+b)+c=a, a+(b+c) = b, but (a+b)+c=c(cid:54)=b. a+c = c+a=b, a+b = b, but b+a=c(cid:54)=b. This shows that (cid:48)(cid:48)+(cid:48)(cid:48) is NeutroAssociative and NeutroCommutative. Hence, (R,+) is a commutative Neu- troSemiGroup. Next, let N and I represent additive neutral element and additive inverse element respectively with x x respecttoanyelementx∈R. Then N = a, a I = a. a N doesnotexist, b I doesnotexist. b N = b, c I = a. c Hence,(R,+)isaNeutroAbelianGroup. Next,consider b(cb) = (bc)b=a, c(bc) = a but (cb)c=b(cid:54)=a. Thisshowsthat(R,.)isNeutroAssociative. Lastly,consider a.(b+c) = a.b+a.c=a, b.(c+a) = c, but b.c+b.a=a(cid:54)=c. (b+b).b = b.b+b.b=a, (b+a).c = b, but b.c+a.c=a(cid:54)=b. a.b = b.a=a, b.c = a, but c.b=c(cid:54)=a. Thisshowsthat(cid:48)(cid:48).(cid:48)(cid:48) isbothleftandrightNeutroDistributiveover(cid:48)(cid:48)+(cid:48)(cid:48) anditisNeutroCommutative. Hence, (R,+,.)isaNeutroCommutativeRing. SinceU =athatisaa=a,itfollowsthat(R,+,.)isaNeutroCom- a mutativeRingwithNeutroUnity. Itisobservedthat(cid:48)(cid:48)a(cid:48)(cid:48) isbothNeutroIdempotentandNeutroNilpotentelementinR. NeutroZeroDivisor elementsinRare(cid:48)(cid:48)a,b,c(cid:48)(cid:48). Again,RisaNeutroFieldbutnotaNeutroIntegralDomain. Doi:10.5281/zenodo.3877121 66 InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 Theorem3.5. EveryNeutroFieldRisnotnecessarilyaNeutroIntegralDomain. Example3.6. LetX =Z andlet⊕and(cid:12)betwobinaryoperationsonXdefinedbyx⊕y =2x+yandx(cid:12) 10 y =x+4yforallx,y ∈X where(cid:48)(cid:48)+(cid:48)(cid:48)isadditionmodulo10. Then(X,⊕,(cid:12))isaNeutroCommutativeRing. Toseethis: (i) (X,⊕)isaNeutroAbelianGroup: Letx,y,z ∈X. Then x⊕(y⊕z) = 2x+2y+z and (x⊕y)⊕=4x+2y+z, equatingthesewehave 2x+2y+z = 4x+2y+z ⇒ 2x = 0 ∴ x = 0,5. Thus,onlythetriplets(0,x,y)and(5,x,y)canverifytheassociativityof⊕(degreeofassociativity= 20%)andtherefore,⊕isNeutroAsociative. (ii) ExistenceofNeutroNeutralandNeutroInverseelements: Lete ∈ X suchthatx⊕e = 2x+e = x and e⊕x = 2e+x = x. Then 2x+e = 2e+x from which we obtain e = x. But then, only 0⊕0=0and5⊕5=5inX (degreeofexistenceofneutralelement=20%). ThisshowsthatX has aNeutroNeutralelement. ItcanalsobeshownthatX hasaNeutroInverseelement. (iii) NeutroComutativity of ⊕: Let x ⊕ y = 2x + y and y ⊕ x = 2y + x so that 2x + y = 2y + x from which we obtain x = y. This shows that only the duplet (x,x) can verify commutativity of ⊕ (degreeofcommutativity=10%)thatis,⊕isNeutroCommutative. Hence,(X,⊕)isaNeutroAbelian- Group. (iv) (X,(cid:12))isaNeutroSemiGroup: Letx,y,z ∈X. Then x(cid:12)(y(cid:12)z)=x+4y+16z and (x(cid:12)y)(cid:12)z =x+4y+4z so that x + 4y + 16z = x + 4y + 4z from which we obtain 12z = 0 so that z = 0,5. Hence, onlythetriplets(x,y,0)and(x,y,5)canverifyassociativityof(cid:12)(degreeofassociativity=20%)and consequently,(X,(cid:12))isaNeutroSemigroup. (v) NeutroDistributivity: Letx,y,z ∈X. Then x(cid:12)(y⊕z) = x+8y+4z,(x(cid:12)y)⊕(x(cid:12)z)=3x+8y+4z sothat x+8y+4z = 3x+8y+4z ⇒2x = 0 ∴ x = 0,5. Thisshowsthatonlythetriplets(0,y,z)and(5,y,z)canverifyleftdistributivityof(cid:12)over⊕ (degreeofleftdistributivity=20%). Again, (y⊕z)(cid:12)x = 4x+2y+z,(y(cid:12)x)⊕(z(cid:12)x)=12x+2y+z sothat 4x+2y+z = 12x+2y+z ⇒8x = 0 ∴ x = 0,5. Thisshowsthatonlythetriplets(0,y,z)and(5,y,z)canverifyrightdistributivityof(cid:12)over⊕ (degreeofrightdistributivity=20%).Thus,(cid:12)isbothleftandrightNeutroDistributiveover⊕.Finally, let x(cid:12)y = x+4y and y (cid:12)x = y +4x. Putting x+4y = y +4x we have x = y showing that onlytheduplet(x,x)canverifythecommutativityof(cid:12)(degreeofcommutativity = 10%). Hence,(cid:12) isNeutroCommutativeandaccordingly,(X,⊕,(cid:12))isaNeutroCommutativeRing. Theorem3.7. Let(R ,+,.),i=1,2,··· ,nbeafamilyofNeutroRings. Then i (i) R=(cid:84)n R isaNeutroRing. i=1 i (ii) R=(cid:81)n R isaNeutroRing. i=1 i Doi:10.5281/zenodo.3877121 67 InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 Proof. Obvious. Definition3.8. Let(R,+,.)beaNeutroRing. AnonemptysubsetS ofRiscalledaNeutroSubringofRif (S,+,.)isalsoaNeutroRing. TheonlytrivialNeutroSubringofRisR. Example 3.9. Let (R,+,.) be the NeutroRing of Example 3.4 and let S = {a,b}. The compositions of elementsofS aregivenintheCayleytablesbelow. + a b . a b a a b a a a b c a b a c Then,S isaNeutroSubringofR. Toseethis: (i) (S,+)isaNeutroAbelianGroup: a+(a+b) = (a+a)+b=b, b+(a+b) = a, but (b+a)+b=c(cid:54)=a. N = a, a I = a, a N doesnotexist, b I doesnotexist. b a+a = a, but a+b=b,b+a=c(cid:54)=b. Hence,(S,+)isaNeutroAbelianGroup. (ii) (S,.)isaNeutroSemigroup: a(ba) = (ab)a=a, b(bb) = a, but (bb)b=c(cid:54)=a. Thisshowsthat(S,.)isaNeutroSemigroup. (iii) NeutroDistributivity: a(a+b) = aa+ab=a, b(b+a) = a, but bb+ba=b(cid:54)=a. (b+a)a = ba+aa=a, (a+b)a = c, but aa+ba=a(cid:54)=c. This shows that both left and right NeutroDistributivity hold. Accordingly, (S,+,.) is a NeutroRing. SinceS isasubsetofR,itfollowsthatS isNeutroSubringofR. Theorem3.10. Let(R,+,.)beaNeutroRingandlet{S },i = 1,2,··· ,nbeafamilyofNeutroSubringsof i R. Then (i) S =(cid:84)n S isaNeutroSubringofR. i=1 i (ii) S =(cid:81)n S isaNeutroSubringofR. i=1 i Proof. Obvious. Definition3.11. Let(R,+,.)beaNeutroRing. AnonemptysubsetI ofRiscalledaleftNeutroIdealofRif thefollowingconditionshold: (i) I isaNeutroSubringofR. (ii) x∈I andr ∈Rimplythatatleastonexr ∈I forallr ∈R. Definition3.12. Let(R,+,.)beaNeutroRing. AnonemptysubsetI ofRiscalledarightNeutroIdealofR ifthefollowingconditionshold: Doi:10.5281/zenodo.3877121 68 InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 (i) I isaNeutroSubringofR. (ii) x∈I andr ∈Rimplythatatleastonerx∈I forallr ∈R. Definition3.13. Let(R,+,.)beaNeutroRing. AnonemptysubsetI ofRiscalledaNeutroIdealofRifthe followingconditionshold: (i) I isaNeutroSubringofR. (ii) x∈I andr ∈Rimplythatatleastonexr,rx∈I forallr ∈R. Example3.14. LetR = {a,b,c}betheNeutroRingofExample3.4andletI = S = {a,b}betheNeutro- SubringofRgiveninExample3.9. Considerthefollowing: aa=a,ab=a,ac=a,ba=a,bb=c(cid:54)∈I,bc=a. ThisshowsthatI isaleftNeutroIdealofR. Again, aa=a,ba=a,ca=a,ab=a,bb=c(cid:54)∈I,cb=c(cid:54)∈I. ThisalsoshowsthatI isarightNeutroIdealofR. Hence,I isaNeutroIdealofR. Theorem3.15. Let(R,+,.)beaNeutroRingandlet{I },i = 1,2,··· ,nbeafamilyofNeutroIdealsofR. i Then (i) I =(cid:84)n I isaNeutroIdealofR. i=1 i (ii) I =(cid:80)n I isaNeutroIdealofR. i=1 i Proof. Obvious. Definition3.16. Let(R,+,.)beaNeutroRingandletI beaNeutroIdealofR. ThesetR/I isdefinedby R/I ={x+I :x∈R}. (19) Forx+I,y+I ∈ R/I withatleastapair(x,y) ∈ R,let⊕and(cid:12)bebinaryoperationsonR/I definedas follows: (x+I)⊕(y+I) = (x+y)+I, (20) (x+I)(cid:12)(y+I) = xy+I. (21) Thenitcanbeshownthatthetripple(R/I,⊕,(cid:12))isaNeutroRingwhichwecallaNeutroQuotientRing. Example3.17. LetRbetheNeutroRingofExample3.4andletI beitsNeutroIdealofExample3.14. Then a+I = {a,b}=I, b+I = {a,c}, c+I = {b,c}, ∴ R/I = {a+I,b+I,c+I}={{a,b},{a,c},{b,c}}. ConsidertheCayleytablesbelow: ⊕ a+I b+I c+I (cid:12) a+I b+I c+I a+I a+I b+I b+I a+I a+I a+I a+I b+I c+I a+I c+I b+I a+I c+I a+I c+I b+I c+I a+I c+I a+I c+I b+I Iteasytodeducefromthetablesthat(R/I,⊕,(cid:12))isaNeutroRing. Theorem 3.18. Let I be a NeutroIdeal of the NeutroRing R. Then R/I is a NeutroCommutativeRing with NeutroUnityifandonlyifRisaNeutroCommutativeRingwithNeutroUnity. Proof. Easy. Doi:10.5281/zenodo.3877121 69 InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 Definition 3.19. Let (R,+,.) and (S,+(cid:48),.(cid:48)) be any two NeutroRings. The mapping φ : R → S is called a NeutroRingHomomorphism if φ preserves the binary operations of R and S that is if for at least a pair (x,y)∈R,wehave: φ(x+y) = φ(x)+(cid:48)φ(y), (22) φ(x.y) = φ(x).(cid:48)φ(y). (23) ThekernelofφdenotedbyKerφisdefinedas Kerφ={x:φ(x)=e } (24) R wheree ∈RissuchthatN =e foratleastoner ∈R. R r R TheimageofφdenotedbyImφisdefinedas Imφ={y ∈S :y =φ(x) foratleastone y ∈S}. (25) If in addition φ is a NeutroBijection, then φ is called a NeutroRingIsomorphism and we write R ∼= S. NeutroRingEpimorphism,NeutroRingMonomorphism,NeutroRingEndomorphismandNeutroRingAutomor- phismaredefinedsimilarly. Example3.20. LetRbetheNeutroRingofExample3.4andletφ:R×R→Rbeamappingdefinedby (cid:26) a if x=y, φ((x,y))= d if x(cid:54)=y. ItcanbeshownthatφisaNeutroRingHomomorphism. TheKerφ = {(a,a),(b,b),(c,c)}whichisaNeu- troSubgRingofR×RascanbeseenintheCayleytablesbelow. + (a,a) (b,b) (c,c) . (a,a) (b,b) (c,c) (a,a) (a,a) (b,b) (b,b) (a,a) (a,a) (a,a) (a,a) (b,b) (c,c) (a,a) (c,c) (b,b) (a,a) (c,c) (a,a) (c,c) (b,b) (c,c) (a,a) (c,c) (a,a) (c,c) (b,b) Imφ={a,d}(cid:54)⊆R. Theorem3.21. LetRandSbetwoNeutroRings. LetN =e foratleastonex∈RandletN =e forat x R y S leastoney ∈S. Supposethatφ:R→S isaNeutroRingHomomorphism. Then: (i) φ(e )isnotnecessarilyequalse . R S (ii) KerφisaNeutroSubringofR. (iii) ImφisnotnecessarilyaNeutroSubringofS. (iv) φisNeutroInjectiveifandonlyifKerφ={e }foratleastonee ∈R. R R Example3.22. LetR={a,b,c}betheNeutroRingofExample3.4andletI ={a,b}betheNeutroIdealof RgiveninExample3.14. Letφ : R → R/I beamappingdefinedbyφ(x) = x+I foratleastonex ∈ R. Thenφ(a) = a+I = {a,b} = I,φ(b) = b+I = {a,c}andφ(c) = c+I = {b,c}fromwhichweobtain thatφisaNeutroRingHomomorphism. Kerφ={x∈R:φ(x)=e }={x∈R:x+I =e =a+I}=I. R/I R/I Theorem3.23. LetI beaNeutroIdealofaNeutroRingR. Thenthemappingψ :R→R/I definedby ψ(x)=x+I foratleastone x∈R isaNeutroRingEpimomorphismandtheKerψ =I. Theorem 3.24. Let φ : R → S be a NeutroRingHomomorpism and let K = Kerφ. Then the mapping ψ :R/K →Imφdefinedby ψ(x+K)=φ(x) foratleastone x∈R isaNeutroRingIsomorphism. Doi:10.5281/zenodo.3877121 70 InternationalJournalofNeutrosophicScience(IJNS) Vol. 7,No. 2,PP.62-73,2020 Proof. Letx+K,y+K ∈R/K withatleastapair(x,y)∈R. Then ψ((x+K)⊕(y+K)) = ψ((x+y)+K) = φ(x+y) = φ(x)+φ(y) = ψ(x+K)⊕ψ(y+K). ψ((x+K)(cid:12)(y+K)) = ψ((xy)+K) = φ(xy) = φ(x)φ(y) = ψ(x+K)(cid:12)ψ(y+K). Kerψ = {x+K ∈R/K :ψ(x+K)=e } φ(x) = {x+K ∈R/K :φ(x)=e } φ(x) = {e }. R/K This shows that ψ is a NeutroBijectiveHomomorphism and therefore it is a NeutroRingIsomorphism that is R/K ∼=Imφwhichisthesameaswhatisobtainableintheclassicalrings. Theorem3.25. NeutroRingIsomorphismofNeutroRingsisanequivalencerelation. Proof. Theproofisthesameastheclassicalrings. 4 Conclusion WehaveforthefirsttimeintroducedinthispapertheconceptofNeutroRingsbyconsideringthreeNeutroAx- ioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multipli- cationoveraddition)). SeveralinterestingresultsandexamplesonNeutroRings,NeutroSubgrings,NeutroIde- als,NeutroQuotientRingsandNeutroRingHomomorphismsarepresented.Itisshownthatthe1stisomorphism theorem of the classical rings holds in the class of NeutroRings. More advanced properties of NeutroRings willbepresentedinourfuturepapers. OtherNeutroAlgebraicStructuressuchasNeutroModules,NeutroVec- torSpacesetcareopenedtobedevelopedandstudiedbyotherNeutrosophicresearchers. 5 Appreciation Theauthorisverygratefultoallanonymousreviewersfortheirvaluableobservations,commentsandsugges- tionswhichhavecontributedimmenselytothequalityofthepaper. References [1] Adeleke,E.O.,Agboola,A.A.A.andSmarandache,F.,RefinedNeutrosophicRingsI,InternationalJour- nalofNeutrosophicScience,vol.2(2),pp.77-81,2020.(DOI:10.5281/zenodo.3728222) [2] AdelekeE.O.,AgboolaA.A.A.andSmarandacheF.,RefinedNeutrosophicRingsII,InternationalJournal ofNeutrosophicScience,vol.2(2),pp.89-94,2020.(DOI:10.5281/zenodo.3728235) [3] Agboola,A.A.A.,IntroductiontoNeutroGroups,InternationalJournalofNeutrosophicScience,Volume 6,Issue1,pp.41-47,2020 [4] Agboola,A.A.A.,OnRefinedNeutrosophicQuotientGroups,InternationalJournalofNeutrosophicSci- ence,vol.5(2),pp.76-82,2020.DOI:10.5281/zenodo.3828609. [5] Agboola, A.A.A., Ibrahim, M.A., Adeleke, E.O. and Akinleye, S.A., On Refined Neutrosophic Al- gebraic Hyperstructures I, International Journal of Neutrosophic Science, vol. 5 (1), pp. 29-37, 2020. DOI:10.5281/zenodo.3789007. [6] Agboola, A.A.A., Ibrahim, M.A. and Adeleke, E.O., Elementary Examination of NeutroAlgebras and AntiAlgebras viz-a-viz the Classical Number Systems, International Journal of Neutrosophic Science, vol.4(1),pp.16-19,2020.DOI:10.5281/zenodo.3752896. Doi:10.5281/zenodo.3877121 71