InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Introduction to NeutroGroups Agboola1A.A.A. DepartmentofMathematics,FederalUniversityofAgriculture,Abeokuta,Nigeria. [email protected] Abstract TheobjectiveofthispaperistoformallypresenttheconceptofNeutroGroupsbyconsideringthreeNeutroAx- ioms(NeutroAssociativity,existenceofNeutroNeutralelementandexistenceofNeutroInverseelement). Sev- eral interesting results and examples of NeutroGroups, NeutroSubgroups, NeutroCyclicGroups, NeutroQuo- tientGroupsandNeutroGroupHomomorphismsarepresented. Itisshownthatgenerally,Lagrange’stheorem and1stisomorphismtheoremoftheclassicalgroupsdonotholdintheclassofNeutroGroups. Keywords: Neutrosophy, NeutroGroup, NeutroSubgroup, NeutroCyclicGroup, NeutroQuotientGroup and NeutroGroupHomomorphism. 1 Introduction In 2019, Florentin Smarandache2 introduced new fields of research in neutrosophy which he called Neu- troStructures and AntiStructures respectively. The concepts of NeutroAlgebras and AntiAlgebras were re- centlyintroducedbySmarandachein.3 Smarandachein4 revisitedthenotionsofNeutroAlgebrasandAntiAl- gebras where he studied Partial Algebras, Universal Algebras, Effect Algebras and Boole’s Partial Algebras and showed that NeutroAlgebras are generalization of Partial Algebras. In,1 Agboola et al examined Neu- troAlgebrasandAntiAlgebrasviz-a-viztheclassicalnumbersystemsN,Z,Q,RandC. ThementionofNeu- troGroupbySmarandachein2motivatedustowritethepresentpaper.TheconceptofNeutroGroupisformally presentedinthispaperbyconsideringthreeNeutroAxioms(NeutroAssociativity,existenceofNeutroNeutral elementandexistenceofNeutroInverseelement). WestudyNeutroSubgroups,NeutroCyclicGroups,Neutro- QuotientGroupsandNeutroGroupHomomorphisms. Wepresentseveralinterestingresultsandexamples. Itis shownthatgenerally,Lagrange’stheoremand1stisomorphismtheoremoftheclassicalgroupsdonotholdin theclassofNeutroGroups. For more details about NeutroAlgebras, AntiAlgebras, NeutroAlgebraic Structures and AntiAlgebraic Structures,thereadersshouldsee.1–4 2 Formal Presentation of NeutroGroup and Properties Inthissection,weformallypresenttheconceptofaNeutroGroupbyconsideringthreeNeutroAxioms(Neu- troAssociativity,existenceofNeutroNeutralelementandexistenceofNeutroInverseelement)andwepresent itsbasicproperties. Definition 2.1. Let G be a nonempty set and let ∗ : G×G → G be a binary operation on G. The couple (G,∗)iscalledaNeutroGroupifthefollowingconditionsaresatisfied: (i) ∗isNeutroAssociativethatisthereexitsatleastonetriplet(a,b,c)∈Gsuchthat a∗(b∗c)=(a∗b)∗c (1) andthereexistsatleastonetriplet(x,y,z)∈Gsuchthat x∗(y∗z)(cid:54)=(x∗y)∗z. (2) 1Correspondence:[email protected] Doi:10.5281/zenodo.3840761 41 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 (ii) ThereexistsaNeutroNeutralelementinGthatisthereexistsatleastanelementa∈Gthathasasingle neutralelementthatiswehavee∈Gsuchthat a∗e=e∗a=a (3) andforb∈Gtheredoesnotexiste∈Gsuchthat b∗e=e∗b=b (4) orthereexiste ,e ∈Gsuchthat 1 2 b∗e = e ∗b=b or (5) 1 1 b∗e = e ∗b=b with e (cid:54)=e (6) 2 2 1 2 (iii) There exists a NeutroInverse element that is there exists an element a ∈ G that has an inverse b ∈ G withrespecttoaunitelemente∈Gthatis a∗b=b∗a=e (7) orthereexistsatleastoneelementb ∈ Gthathastwoormoreinversesc,d ∈ Gwithrespecttosome unitelementu∈Gthatis b∗c = c∗b=u (8) b∗d = d∗b=u. (9) Inaddition,if∗isNeutroCommutativethatisthereexistsatleastaduplet(a,b)∈Gsuchthat a∗b=b∗a (10) andthereexistsatleastaduplet(c,d)∈Gsuchthat c∗d(cid:54)=d∗c, (11) then(G,∗)iscalledaNeutroCommutativeGrouporaNeutroAbelianGroup. Ifonlycondition(i)issatisfied,then(G,∗)iscalledaNeutroSemiGroupandifonlyconditions(i)and(ii) aresatisfied,then(G,∗)iscalledaNeutroMonoid. Definition2.2. Let(G,∗)beaNeutroGroup. GissaidtobefiniteofordernifthecardinalityofGisnthat iso(G)=n. Otherwise,GiscalledaninfiniteNeutroGroupandwewriteo(G)=∞. Example2.3. LetU = {a,b,c,d,e,f}beauniverseofdiscourseandletG = {a,b,c,d}beasubsetofU. Let∗beabinaryoperationdefinedonGasshownintheCayleytablebelow: ∗ a b c d a b c d a b c d a c . c d a b d d a b c a Itisclearfromthetablethat: a∗(b∗c) = (a∗b)∗c=d, b∗(d∗c) = a, but (b∗d)∗c=b. Thisshowsthat∗isNeutroAssociativeandhence(G,∗)isaNeutroSemiGroup. Next,letN andI representtheneutralelementandtheinverseelementrespectivelywithrespecttoany x x elementx∈G. Then N = d, a I = c, a N ,N ,N donotexist, b c d I ,I ,I donotexist. b c d Thisinadditionto(G,∗)beingaNeutroSemiGroupimpliesthat(G,∗)isaNeutroGroup. Itisalsoclearfromthetablethat∗isNeutroCommutative. Hence,(G,∗)isaNeutroAbelianGroup. Doi:10.5281/zenodo.3840761 42 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Example2.4. LetG = Z andlet∗beabinaryoperationonGdefinedbyx∗y = x+2y forallx,y ∈ G 10 where+isadditionmodulo10. Then(G,∗)isaNeutroAbeliaGroup. Toseethis,forx,y,z ∈G,wehave x∗(y∗z) = x+2y+4z, (12) (x∗y)∗z = x+2y+2z. (13) Equating (16) and (17) we obtain z = 0,5. Hence only the triplets (x,y,0),(x,y,5) can verify associativ- ity of ∗ and not any other triplet (x,y,z) ∈ G. Hence, ∗ is NeutroAssociative and therefore, (G,∗) is a NeutroSemigroup. Next,lete∈Gsuchthatx∗e=x+2e=xande∗x=e+2x. Then,x+2e=e+2xfromwhichwe obtaine = x. Butthen,only5∗5 = 5inG. ThisshowsthatGhasaNeutroNeutralelement. Itcanalsobe shownthatGhasaNeutroInverseelement. Hence,(G,∗)isaNeutroGroup. Lastly, x∗y = x+2y, (14) y∗x = y+2x. (15) Equating(18)and(19),weobtainx=y. Henceonlytheduplet(x,x)∈Gcanverifycommutativityof∗and notanyotherduplet(x,y)∈G. Hence,∗isNeutroCommutativeandthus(G,∗)isaNeutroAbelianGroup. Remark2.5. GeneralNeutroGroupisaparticularcaseofgeneralNeutroAlgebrawhichisanalgebrawhich has at least one NeutroOperation or one NeutroAxiom (axiom that is true for some elements, indeterminate forotherelements,andfalsefortheotherelements). Therefore,aNeutroGroupisagroupthathaseitherone NeutroOperation (partially well-defined, partially indeterminate, and partially outer-defined), or atleast one NeutroAxiom(NeutroAssociativity,NeutroElement,orNeutroInverse). ItispossibletodefineNeutroGroupinanotherwaybyconsideringonlyoneNeutroAxiomorbyconsider- ingtwoNeutroAxioms. Theorem2.6. Let(G ,∗),i=1,2,··· ,nbeafamilyofNeutroGroups. Then i (i) G=(cid:84)n G isaNeutroGroup. i=1 i (ii) G=(cid:81)n G isaNeutroGroup. i=1 i Proof. Obvious. Definition2.7. Let(G,∗)beaNeutroGroup. AnonemptysubsetH ofGiscalledaNeutroSubgroupofGif (H,∗)isalsoaNeutroGroup. TheonlytrivialNeutroSubgroupofGisG. Example 2.8. Let (G,∗) be the NeutroGroup of Example 2.3 and let H = {a,c,d}. The compositions of elementsofH aregivenintheCayleytablebelow. ∗ a c d a b d a . c d b d d a c a Itisclearfromthetablethat: a∗(c∗d) = (a∗c)∗d=a, d∗(c∗a) = a, but (d∗c)∗a=d(cid:54)=a. N = d, a I = c, a N ,N donotexist, c d I ,I donotexist. c d a∗d = d∗a=a, but c∗d=d,d∗c=c(cid:54)=d. Alltheseshowthat(H,∗)isaNeutroAbelianGroup. SinceH ⊂G,itfollowsthatH isaNeutroSubgroupof G. It should be observed that the order of H is not a divisor of the order of G. Hence, Lagrange’s theorem doesnothold. Doi:10.5281/zenodo.3840761 43 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Theorem2.9. Let(G,∗)beaNeutroGroupandlet(H ,∗),i = 1,2,··· ,nbeafamilyofNeutroSubgroups i ofG. Then (i) H =(cid:84)n H isaNeutroSubgroupofG. i=1 i (ii) H =(cid:81)n H isaNeutroSubgroupofG. i=1 i Proof. Obvious. Definition2.10. LetH beaNeutroSubgroupoftheNeutroGroup(G,∗)andletx∈G. (i) xH theleftcosetofH inGisdefinedby xH ={xh:h∈H}. (16) (i) HxtherightcosetofH inGisdefinedby Hx={hx:h∈H}. (17) Example2.11. Let(G,∗)betheNeutroGroupofExample2.3andletH betheNeutroSubgroupofExample 2.8. H thesetofdistinctleftcosetsofH inGisgivenby l H ={{a,b,d},{a,c},{b,d}} l andH thesetofdistinctrightcosetsofH inGisgivenby r H ={{a,b,d},{a,b,c},{b,c,d},{a,d}}. r It should be observed that H and H do not partition G. This is different from what is obtainable in the l r classicalgroups. However,theorderofH is3whichisnotadivisoroftheorderofGandtherefore,[G:H] l the index of H in G is 3, that is [G : H] = 3. Also, the order of H is 4 which is a divisor of G. Hence, r [G:H]=4. Example2.12. LetU = {a,b,c,d}beauniverseofdiscourseandletG = {a,b,c}beaNeutroGroupgiven intheCayleytablebelow: ∗ a b c a a c b . b c a c c a c d LetH ={a,b}beaNeutroSubgroupofGgivenintheCayleytablebelow: ∗ a b a a c . b c a Then,thesetsofdistinctleftandrightcosetsofH inGarerespectivelyobtainedas: H = {{a,c}}, l H = {{a,},{c},{b,c}}. r Inthisexample,theorderofH thesetofdistinctleftcosetsofH inGis1whichisnotadivisoroftheorder l ofGandtherefore,[G:H]=1. However,theorderofH thesetofdistinctrightcosetsofH inGis3which r isadivisoroftheorderofGandtherefore,[G : H] = 3. Thisisalsodifferentfromwhatisobtainableinthe classicalgroups. ConsequentonExamples2.8,2.11and2.12,westatethefollowingtheorem: Theorem2.13. LetH beaNeutroSubgroupofthefiniteNeutroGroup(G,∗). Thengenerally: (i) o(H)isnotadivisorofo(G). (ii) Thereisno1-1correspondencebetweenanytwoleft(right)cosetsofH inG. Doi:10.5281/zenodo.3840761 44 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 (iii) Thereisno1-1correspondencebetweenanyleft(right)cosetofH inGandH. (iv) IfN =ethatisxe=ex=xforanyx∈G,theneH (cid:54)=H,He(cid:54)=Hand{e}isnotaNeutroSubgroup x ofG. (v) o(G)(cid:54)=[G:H]o(H). (vi) Thesetofdistinctleft(right)cosetsofH inGisnotapartitionofG. Definition2.14. Let(G,∗)beaNeuroGroup. Since∗isassociativeforatleastonetriplet(x,x,x) ∈ G,the powersofxaredefinedasfollows: x1 = x x2 = xx x3 = xxx . . . . . . xn = xxx···x nfactors ∀n∈N. Theorem2.15. Let(G,∗)beaNeutroGroupandletx∈G. Thenforanym,n∈N,wehave: (i) xmxn =xm+n. (ii) (xm)n =xmn. Definition 2.16. Let (G,∗) be a NeutroGroup. G is said to be cyclic if G can be generated by an element x∈Gthatis G=<x>={xn :n∈N}. (18) Example2.17. Let(G,∗)betheNeutroGroupgiveninExample2.3andconsiderthefollowing: a1 = a,a2 =b,a3 =c,a4 =d. b1 = b,b2 =d,b3 =c,b4 =a. c1 = c,c2 =b,c3 =a,c4 =d. d1 = d,d2 =a,d3 =a,d4 =a. ∴ G = <a>=<b>=<c>,G(cid:54)=<d>. TheseshowthatGiscyclicwiththegeneratorsa,b,c. Theelementd∈GdoesnotgenerateG. Definition2.18. LetH beaNeutroSubgroupoftheNeutroGroup(G,∗). Thesets(G/H) and(G/H) are l r definedby: (G/H) = {xH :x∈G} (19) l (G/H) = {Hx:x∈G}. (20) r LetxH,yH ∈(G/H) andlet(cid:12) beabinaryoperationdefinedon(G/H) by l l l xH (cid:12) yH =x∗yH ∀x,y ∈G. (21) l Also,letxH,yH ∈(G/H) andlet(cid:12) beabinaryoperationdefinedon(G/H) by r r r Hx(cid:12) Hy =Hx∗y ∀x,y ∈G. (22) r Itcanbeshownthatthecouples((G/H) ,(cid:12) )and((G/H) ,(cid:12) )areNeutroGroups. l l r r Example2.19. LetGandH beasgiveninExample2.12andconsider (G/H) ={aH,bH,cH}={aH}={{a,c}}. l Then((G/H) ,(cid:12) )isaNeutroGroup. l l Doi:10.5281/zenodo.3840761 45 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Definition 2.20. Let (G,∗) and (H,◦) be any two NeutroGroups. The mapping φ : G → H is called a NeutroGroupHomomorphismifφpreservesthebinaryoperations∗and◦thatisifforallx,y ∈G,wehave φ(x∗y)=φ(x)◦φ(y). (23) ThekernelofφdenotedbyKerφisdefinedas Kerφ={x:φ(x)=e } (24) H wheree ∈H issuchthatN =e foratleastoneh∈H. H h H TheimageofφdenotedbyImφisdefinedas Imφ={y ∈H :y =φ(x) forsome h∈H}. (25) If in addition φ is a bijection, then φ is called a NeutroGroupIsomorphism and we write G ∼= H. Neu- troGroupEpimorphism, NeutroGroupMonomorphism, NeutroGroupEndomorphism, and NeutroGroupAuto- morphismaresimilarlydefined. Example2.21. Let(G,∗)beaNeutroGroupofExample2.12andletψ :G×G→Gbeaprojectiongiven by ψ((x,y))=x ∀x,y ∈G. Thenψ isaNeutroGroupHomomorphism. TheKerψ = {(a,a),(a,b),a,c)}whichisaNeutroSubgroupof G×GasshownintheCayleytablebelow. ∗ (a,a) (a,b) (a,c) (a,a) (a,a) (a,c) (a,b) (a,b) (a,c) (a,a) (a,c) (a,c) (a,a) (a,c) (a,d) andImψ ={a,b,c}=G. ConsequentonExample2.21,westatethefollowingtheorem: Theorem2.22. Let(G,∗)and(H,◦)beNeutroGroupsandletN = e suchthate ∗x = x∗e = xfor x G G G atleastonex ∈ GandletN = e suchthate ∗y = y∗e = y foratleastoney ∈ H. Supposethat y H H H φ:G→H isaNeutroGroupHomomorphism. Then: (i) φ(e )=e . G H (ii) KerφisaNeutroSubgroupofG. (iii) ImφisaNeutroSubgroupofH. (iv) φisinjectiveifandonlyifKerφ={e }. G Example2.23. ConsideringExample2.19,letφ:G→G/Hbeamappingdefinedbyφ(x)=xHforallx∈ G. Then,φ(a)=φ(b)=φ(c)=aH ={a,c}fromwhichwehavethatφisaNeutroGroupHomomorphism. Kerφ={x∈G:φ(x)=e }={x∈G:xH =e =e }=(cid:54) H. G/H G/H {{a,c}} ConsequentonExample2.23,westatethefollowingtheorem: Theorem2.24. LetH beaNeutroSubgroupofaNeutroGroup(G,∗). Themappingψ : G → G/H defined by ψ(x)=xH ∀x∈G isaNeutroGroupHomomorphismandtheKerψ (cid:54)=H. Theorem 2.25. Let φ : G → H be a NeutroGroupHomomorpism and let K = Kerφ. Then the mapping ψ :G/K →Imφdefinedby ψ(xK)=φ(x) ∀x∈G isaNeutroGroupEpimorphismandnotaNeutroGroupIsomorphism. Doi:10.5281/zenodo.3840761 46 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Proof. Thatψisawelldefinedsurjectivemappingisclear. LetxK,yK ∈G/K bearbitrary. Then ψ(xKyK) = ψ(xyK) = φ(xy) = φ(x)φ(y) = ψ(xK)ψ(yK). Kerψ = {xK ∈G/K :ψ(xK)=e } φ(x) = {xK ∈G/K :φ(x)=e } φ(x) (cid:54)= {e }. G/K ThisshowsthatψisasurjectiveNeutroGroupHomomorphismandthereforeitisaNeutroGroupEpimorphism. Sinceψisnotinjective,itfollowsthatG/K (cid:54)∼=Imφwhichisdifferentfromwhatisobtainableintheclassical groups. Theorem2.26. NeutroGroupIsomorphismofNeutrogroupsisanequivalencerelation. Proof. Thesameastheclassicalgroups. 3 Conclusion We have formally presented the concept of NeutroGroup in this paper by considering three NeutroAxioms (NeutroAssociativity, existence of NeutroNeutral element and existence of NeutroInverse element). We pre- sentedandstudiedseveralinterestingresultsandexamplesonNeutroSubgroups, NeutroCyclicGroups, Neu- troQuotientGroups and NeutroGroupHomomorphisms. We have shown that generally, Lagrange’s theorem and1stisomorphismtheoremoftheclassicalgroupsdonotholdintheclassofNeutroGroups. Furtherstudies of NeutroGroups will be presented in our future papers. Other NeutroAlgebraicStructures such as NeutroR- ings,NeutroModules,NeutroVectorSpacesetcareopenedtostudiesforNeutrosophicResearchers. 4 Appreciation Theauthorisverygratefultoallanonymousreviewersforvaluablecommentsandsuggestionswhichwehave foundveryusefulintheimprovementofthepaper. References [1] Agboola A.A.A., Ibrahim M.A. and Adeleke E.O.,”Elementary Examination of NeutroAlgebras and AntiAlgebras viz-a-viz the Classical Number Systems”, International Journal of Neutrosophic Sci- ence,Volume4,Issue1,pp.16-19,2020. [2] Smarandache,F.,”IntroductiontoNeutroAlgebraicStructures,inAdvancesofStandardandNonstandard NeutrosophicTheories,”PonsPublishingHouseBrussels,Belgium,Ch.6,pp.240-265,2019. [3] Smarandache,F.,”IntroductiontoNeutroAlgebraicStructuresandAntiAlgebraicStructures(revisited)”, NeutrosophicSetsandSystems,vol.31,pp.1-16,2020.DOI:10.5281/zenodo.3638232. [4] Smarandache,F.,”NeutroAlgebraisaGeneralizationofPartialAlgebra”,InternationalJournalofNeu- trosophicScience,vol.2(1),pp.08-17,2020. Doi:10.5281/zenodo.3840761 47