ebook img

Introduction to NeutroGroups PDF

2020·0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to NeutroGroups

InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Introduction to NeutroGroups Agboola1A.A.A. DepartmentofMathematics,FederalUniversityofAgriculture,Abeokuta,Nigeria. [email protected] Abstract TheobjectiveofthispaperistoformallypresenttheconceptofNeutroGroupsbyconsideringthreeNeutroAx- ioms(NeutroAssociativity,existenceofNeutroNeutralelementandexistenceofNeutroInverseelement). Sev- eral interesting results and examples of NeutroGroups, NeutroSubgroups, NeutroCyclicGroups, NeutroQuo- tientGroupsandNeutroGroupHomomorphismsarepresented. Itisshownthatgenerally,Lagrange’stheorem and1stisomorphismtheoremoftheclassicalgroupsdonotholdintheclassofNeutroGroups. Keywords: Neutrosophy, NeutroGroup, NeutroSubgroup, NeutroCyclicGroup, NeutroQuotientGroup and NeutroGroupHomomorphism. 1 Introduction In 2019, Florentin Smarandache2 introduced new fields of research in neutrosophy which he called Neu- troStructures and AntiStructures respectively. The concepts of NeutroAlgebras and AntiAlgebras were re- centlyintroducedbySmarandachein.3 Smarandachein4 revisitedthenotionsofNeutroAlgebrasandAntiAl- gebras where he studied Partial Algebras, Universal Algebras, Effect Algebras and Boole’s Partial Algebras and showed that NeutroAlgebras are generalization of Partial Algebras. In,1 Agboola et al examined Neu- troAlgebrasandAntiAlgebrasviz-a-viztheclassicalnumbersystemsN,Z,Q,RandC. ThementionofNeu- troGroupbySmarandachein2motivatedustowritethepresentpaper.TheconceptofNeutroGroupisformally presentedinthispaperbyconsideringthreeNeutroAxioms(NeutroAssociativity,existenceofNeutroNeutral elementandexistenceofNeutroInverseelement). WestudyNeutroSubgroups,NeutroCyclicGroups,Neutro- QuotientGroupsandNeutroGroupHomomorphisms. Wepresentseveralinterestingresultsandexamples. Itis shownthatgenerally,Lagrange’stheoremand1stisomorphismtheoremoftheclassicalgroupsdonotholdin theclassofNeutroGroups. For more details about NeutroAlgebras, AntiAlgebras, NeutroAlgebraic Structures and AntiAlgebraic Structures,thereadersshouldsee.1–4 2 Formal Presentation of NeutroGroup and Properties Inthissection,weformallypresenttheconceptofaNeutroGroupbyconsideringthreeNeutroAxioms(Neu- troAssociativity,existenceofNeutroNeutralelementandexistenceofNeutroInverseelement)andwepresent itsbasicproperties. Definition 2.1. Let G be a nonempty set and let ∗ : G×G → G be a binary operation on G. The couple (G,∗)iscalledaNeutroGroupifthefollowingconditionsaresatisfied: (i) ∗isNeutroAssociativethatisthereexitsatleastonetriplet(a,b,c)∈Gsuchthat a∗(b∗c)=(a∗b)∗c (1) andthereexistsatleastonetriplet(x,y,z)∈Gsuchthat x∗(y∗z)(cid:54)=(x∗y)∗z. (2) 1Correspondence:[email protected] Doi:10.5281/zenodo.3840761 41 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 (ii) ThereexistsaNeutroNeutralelementinGthatisthereexistsatleastanelementa∈Gthathasasingle neutralelementthatiswehavee∈Gsuchthat a∗e=e∗a=a (3) andforb∈Gtheredoesnotexiste∈Gsuchthat b∗e=e∗b=b (4) orthereexiste ,e ∈Gsuchthat 1 2 b∗e = e ∗b=b or (5) 1 1 b∗e = e ∗b=b with e (cid:54)=e (6) 2 2 1 2 (iii) There exists a NeutroInverse element that is there exists an element a ∈ G that has an inverse b ∈ G withrespecttoaunitelemente∈Gthatis a∗b=b∗a=e (7) orthereexistsatleastoneelementb ∈ Gthathastwoormoreinversesc,d ∈ Gwithrespecttosome unitelementu∈Gthatis b∗c = c∗b=u (8) b∗d = d∗b=u. (9) Inaddition,if∗isNeutroCommutativethatisthereexistsatleastaduplet(a,b)∈Gsuchthat a∗b=b∗a (10) andthereexistsatleastaduplet(c,d)∈Gsuchthat c∗d(cid:54)=d∗c, (11) then(G,∗)iscalledaNeutroCommutativeGrouporaNeutroAbelianGroup. Ifonlycondition(i)issatisfied,then(G,∗)iscalledaNeutroSemiGroupandifonlyconditions(i)and(ii) aresatisfied,then(G,∗)iscalledaNeutroMonoid. Definition2.2. Let(G,∗)beaNeutroGroup. GissaidtobefiniteofordernifthecardinalityofGisnthat iso(G)=n. Otherwise,GiscalledaninfiniteNeutroGroupandwewriteo(G)=∞. Example2.3. LetU = {a,b,c,d,e,f}beauniverseofdiscourseandletG = {a,b,c,d}beasubsetofU. Let∗beabinaryoperationdefinedonGasshownintheCayleytablebelow: ∗ a b c d a b c d a b c d a c . c d a b d d a b c a Itisclearfromthetablethat: a∗(b∗c) = (a∗b)∗c=d, b∗(d∗c) = a, but (b∗d)∗c=b. Thisshowsthat∗isNeutroAssociativeandhence(G,∗)isaNeutroSemiGroup. Next,letN andI representtheneutralelementandtheinverseelementrespectivelywithrespecttoany x x elementx∈G. Then N = d, a I = c, a N ,N ,N donotexist, b c d I ,I ,I donotexist. b c d Thisinadditionto(G,∗)beingaNeutroSemiGroupimpliesthat(G,∗)isaNeutroGroup. Itisalsoclearfromthetablethat∗isNeutroCommutative. Hence,(G,∗)isaNeutroAbelianGroup. Doi:10.5281/zenodo.3840761 42 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Example2.4. LetG = Z andlet∗beabinaryoperationonGdefinedbyx∗y = x+2y forallx,y ∈ G 10 where+isadditionmodulo10. Then(G,∗)isaNeutroAbeliaGroup. Toseethis,forx,y,z ∈G,wehave x∗(y∗z) = x+2y+4z, (12) (x∗y)∗z = x+2y+2z. (13) Equating (16) and (17) we obtain z = 0,5. Hence only the triplets (x,y,0),(x,y,5) can verify associativ- ity of ∗ and not any other triplet (x,y,z) ∈ G. Hence, ∗ is NeutroAssociative and therefore, (G,∗) is a NeutroSemigroup. Next,lete∈Gsuchthatx∗e=x+2e=xande∗x=e+2x. Then,x+2e=e+2xfromwhichwe obtaine = x. Butthen,only5∗5 = 5inG. ThisshowsthatGhasaNeutroNeutralelement. Itcanalsobe shownthatGhasaNeutroInverseelement. Hence,(G,∗)isaNeutroGroup. Lastly, x∗y = x+2y, (14) y∗x = y+2x. (15) Equating(18)and(19),weobtainx=y. Henceonlytheduplet(x,x)∈Gcanverifycommutativityof∗and notanyotherduplet(x,y)∈G. Hence,∗isNeutroCommutativeandthus(G,∗)isaNeutroAbelianGroup. Remark2.5. GeneralNeutroGroupisaparticularcaseofgeneralNeutroAlgebrawhichisanalgebrawhich has at least one NeutroOperation or one NeutroAxiom (axiom that is true for some elements, indeterminate forotherelements,andfalsefortheotherelements). Therefore,aNeutroGroupisagroupthathaseitherone NeutroOperation (partially well-defined, partially indeterminate, and partially outer-defined), or atleast one NeutroAxiom(NeutroAssociativity,NeutroElement,orNeutroInverse). ItispossibletodefineNeutroGroupinanotherwaybyconsideringonlyoneNeutroAxiomorbyconsider- ingtwoNeutroAxioms. Theorem2.6. Let(G ,∗),i=1,2,··· ,nbeafamilyofNeutroGroups. Then i (i) G=(cid:84)n G isaNeutroGroup. i=1 i (ii) G=(cid:81)n G isaNeutroGroup. i=1 i Proof. Obvious. Definition2.7. Let(G,∗)beaNeutroGroup. AnonemptysubsetH ofGiscalledaNeutroSubgroupofGif (H,∗)isalsoaNeutroGroup. TheonlytrivialNeutroSubgroupofGisG. Example 2.8. Let (G,∗) be the NeutroGroup of Example 2.3 and let H = {a,c,d}. The compositions of elementsofH aregivenintheCayleytablebelow. ∗ a c d a b d a . c d b d d a c a Itisclearfromthetablethat: a∗(c∗d) = (a∗c)∗d=a, d∗(c∗a) = a, but (d∗c)∗a=d(cid:54)=a. N = d, a I = c, a N ,N donotexist, c d I ,I donotexist. c d a∗d = d∗a=a, but c∗d=d,d∗c=c(cid:54)=d. Alltheseshowthat(H,∗)isaNeutroAbelianGroup. SinceH ⊂G,itfollowsthatH isaNeutroSubgroupof G. It should be observed that the order of H is not a divisor of the order of G. Hence, Lagrange’s theorem doesnothold. Doi:10.5281/zenodo.3840761 43 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Theorem2.9. Let(G,∗)beaNeutroGroupandlet(H ,∗),i = 1,2,··· ,nbeafamilyofNeutroSubgroups i ofG. Then (i) H =(cid:84)n H isaNeutroSubgroupofG. i=1 i (ii) H =(cid:81)n H isaNeutroSubgroupofG. i=1 i Proof. Obvious. Definition2.10. LetH beaNeutroSubgroupoftheNeutroGroup(G,∗)andletx∈G. (i) xH theleftcosetofH inGisdefinedby xH ={xh:h∈H}. (16) (i) HxtherightcosetofH inGisdefinedby Hx={hx:h∈H}. (17) Example2.11. Let(G,∗)betheNeutroGroupofExample2.3andletH betheNeutroSubgroupofExample 2.8. H thesetofdistinctleftcosetsofH inGisgivenby l H ={{a,b,d},{a,c},{b,d}} l andH thesetofdistinctrightcosetsofH inGisgivenby r H ={{a,b,d},{a,b,c},{b,c,d},{a,d}}. r It should be observed that H and H do not partition G. This is different from what is obtainable in the l r classicalgroups. However,theorderofH is3whichisnotadivisoroftheorderofGandtherefore,[G:H] l the index of H in G is 3, that is [G : H] = 3. Also, the order of H is 4 which is a divisor of G. Hence, r [G:H]=4. Example2.12. LetU = {a,b,c,d}beauniverseofdiscourseandletG = {a,b,c}beaNeutroGroupgiven intheCayleytablebelow: ∗ a b c a a c b . b c a c c a c d LetH ={a,b}beaNeutroSubgroupofGgivenintheCayleytablebelow: ∗ a b a a c . b c a Then,thesetsofdistinctleftandrightcosetsofH inGarerespectivelyobtainedas: H = {{a,c}}, l H = {{a,},{c},{b,c}}. r Inthisexample,theorderofH thesetofdistinctleftcosetsofH inGis1whichisnotadivisoroftheorder l ofGandtherefore,[G:H]=1. However,theorderofH thesetofdistinctrightcosetsofH inGis3which r isadivisoroftheorderofGandtherefore,[G : H] = 3. Thisisalsodifferentfromwhatisobtainableinthe classicalgroups. ConsequentonExamples2.8,2.11and2.12,westatethefollowingtheorem: Theorem2.13. LetH beaNeutroSubgroupofthefiniteNeutroGroup(G,∗). Thengenerally: (i) o(H)isnotadivisorofo(G). (ii) Thereisno1-1correspondencebetweenanytwoleft(right)cosetsofH inG. Doi:10.5281/zenodo.3840761 44 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 (iii) Thereisno1-1correspondencebetweenanyleft(right)cosetofH inGandH. (iv) IfN =ethatisxe=ex=xforanyx∈G,theneH (cid:54)=H,He(cid:54)=Hand{e}isnotaNeutroSubgroup x ofG. (v) o(G)(cid:54)=[G:H]o(H). (vi) Thesetofdistinctleft(right)cosetsofH inGisnotapartitionofG. Definition2.14. Let(G,∗)beaNeuroGroup. Since∗isassociativeforatleastonetriplet(x,x,x) ∈ G,the powersofxaredefinedasfollows: x1 = x x2 = xx x3 = xxx . . . . . . xn = xxx···x nfactors ∀n∈N. Theorem2.15. Let(G,∗)beaNeutroGroupandletx∈G. Thenforanym,n∈N,wehave: (i) xmxn =xm+n. (ii) (xm)n =xmn. Definition 2.16. Let (G,∗) be a NeutroGroup. G is said to be cyclic if G can be generated by an element x∈Gthatis G=<x>={xn :n∈N}. (18) Example2.17. Let(G,∗)betheNeutroGroupgiveninExample2.3andconsiderthefollowing: a1 = a,a2 =b,a3 =c,a4 =d. b1 = b,b2 =d,b3 =c,b4 =a. c1 = c,c2 =b,c3 =a,c4 =d. d1 = d,d2 =a,d3 =a,d4 =a. ∴ G = <a>=<b>=<c>,G(cid:54)=<d>. TheseshowthatGiscyclicwiththegeneratorsa,b,c. Theelementd∈GdoesnotgenerateG. Definition2.18. LetH beaNeutroSubgroupoftheNeutroGroup(G,∗). Thesets(G/H) and(G/H) are l r definedby: (G/H) = {xH :x∈G} (19) l (G/H) = {Hx:x∈G}. (20) r LetxH,yH ∈(G/H) andlet(cid:12) beabinaryoperationdefinedon(G/H) by l l l xH (cid:12) yH =x∗yH ∀x,y ∈G. (21) l Also,letxH,yH ∈(G/H) andlet(cid:12) beabinaryoperationdefinedon(G/H) by r r r Hx(cid:12) Hy =Hx∗y ∀x,y ∈G. (22) r Itcanbeshownthatthecouples((G/H) ,(cid:12) )and((G/H) ,(cid:12) )areNeutroGroups. l l r r Example2.19. LetGandH beasgiveninExample2.12andconsider (G/H) ={aH,bH,cH}={aH}={{a,c}}. l Then((G/H) ,(cid:12) )isaNeutroGroup. l l Doi:10.5281/zenodo.3840761 45 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Definition 2.20. Let (G,∗) and (H,◦) be any two NeutroGroups. The mapping φ : G → H is called a NeutroGroupHomomorphismifφpreservesthebinaryoperations∗and◦thatisifforallx,y ∈G,wehave φ(x∗y)=φ(x)◦φ(y). (23) ThekernelofφdenotedbyKerφisdefinedas Kerφ={x:φ(x)=e } (24) H wheree ∈H issuchthatN =e foratleastoneh∈H. H h H TheimageofφdenotedbyImφisdefinedas Imφ={y ∈H :y =φ(x) forsome h∈H}. (25) If in addition φ is a bijection, then φ is called a NeutroGroupIsomorphism and we write G ∼= H. Neu- troGroupEpimorphism, NeutroGroupMonomorphism, NeutroGroupEndomorphism, and NeutroGroupAuto- morphismaresimilarlydefined. Example2.21. Let(G,∗)beaNeutroGroupofExample2.12andletψ :G×G→Gbeaprojectiongiven by ψ((x,y))=x ∀x,y ∈G. Thenψ isaNeutroGroupHomomorphism. TheKerψ = {(a,a),(a,b),a,c)}whichisaNeutroSubgroupof G×GasshownintheCayleytablebelow. ∗ (a,a) (a,b) (a,c) (a,a) (a,a) (a,c) (a,b) (a,b) (a,c) (a,a) (a,c) (a,c) (a,a) (a,c) (a,d) andImψ ={a,b,c}=G. ConsequentonExample2.21,westatethefollowingtheorem: Theorem2.22. Let(G,∗)and(H,◦)beNeutroGroupsandletN = e suchthate ∗x = x∗e = xfor x G G G atleastonex ∈ GandletN = e suchthate ∗y = y∗e = y foratleastoney ∈ H. Supposethat y H H H φ:G→H isaNeutroGroupHomomorphism. Then: (i) φ(e )=e . G H (ii) KerφisaNeutroSubgroupofG. (iii) ImφisaNeutroSubgroupofH. (iv) φisinjectiveifandonlyifKerφ={e }. G Example2.23. ConsideringExample2.19,letφ:G→G/Hbeamappingdefinedbyφ(x)=xHforallx∈ G. Then,φ(a)=φ(b)=φ(c)=aH ={a,c}fromwhichwehavethatφisaNeutroGroupHomomorphism. Kerφ={x∈G:φ(x)=e }={x∈G:xH =e =e }=(cid:54) H. G/H G/H {{a,c}} ConsequentonExample2.23,westatethefollowingtheorem: Theorem2.24. LetH beaNeutroSubgroupofaNeutroGroup(G,∗). Themappingψ : G → G/H defined by ψ(x)=xH ∀x∈G isaNeutroGroupHomomorphismandtheKerψ (cid:54)=H. Theorem 2.25. Let φ : G → H be a NeutroGroupHomomorpism and let K = Kerφ. Then the mapping ψ :G/K →Imφdefinedby ψ(xK)=φ(x) ∀x∈G isaNeutroGroupEpimorphismandnotaNeutroGroupIsomorphism. Doi:10.5281/zenodo.3840761 46 InternationalJournalofNeutrosophicScience(IJNS) Vol. 6,No. 1,PP.41-47,2020 Proof. Thatψisawelldefinedsurjectivemappingisclear. LetxK,yK ∈G/K bearbitrary. Then ψ(xKyK) = ψ(xyK) = φ(xy) = φ(x)φ(y) = ψ(xK)ψ(yK). Kerψ = {xK ∈G/K :ψ(xK)=e } φ(x) = {xK ∈G/K :φ(x)=e } φ(x) (cid:54)= {e }. G/K ThisshowsthatψisasurjectiveNeutroGroupHomomorphismandthereforeitisaNeutroGroupEpimorphism. Sinceψisnotinjective,itfollowsthatG/K (cid:54)∼=Imφwhichisdifferentfromwhatisobtainableintheclassical groups. Theorem2.26. NeutroGroupIsomorphismofNeutrogroupsisanequivalencerelation. Proof. Thesameastheclassicalgroups. 3 Conclusion We have formally presented the concept of NeutroGroup in this paper by considering three NeutroAxioms (NeutroAssociativity, existence of NeutroNeutral element and existence of NeutroInverse element). We pre- sentedandstudiedseveralinterestingresultsandexamplesonNeutroSubgroups, NeutroCyclicGroups, Neu- troQuotientGroups and NeutroGroupHomomorphisms. We have shown that generally, Lagrange’s theorem and1stisomorphismtheoremoftheclassicalgroupsdonotholdintheclassofNeutroGroups. Furtherstudies of NeutroGroups will be presented in our future papers. Other NeutroAlgebraicStructures such as NeutroR- ings,NeutroModules,NeutroVectorSpacesetcareopenedtostudiesforNeutrosophicResearchers. 4 Appreciation Theauthorisverygratefultoallanonymousreviewersforvaluablecommentsandsuggestionswhichwehave foundveryusefulintheimprovementofthepaper. References [1] Agboola A.A.A., Ibrahim M.A. and Adeleke E.O.,”Elementary Examination of NeutroAlgebras and AntiAlgebras viz-a-viz the Classical Number Systems”, International Journal of Neutrosophic Sci- ence,Volume4,Issue1,pp.16-19,2020. [2] Smarandache,F.,”IntroductiontoNeutroAlgebraicStructures,inAdvancesofStandardandNonstandard NeutrosophicTheories,”PonsPublishingHouseBrussels,Belgium,Ch.6,pp.240-265,2019. [3] Smarandache,F.,”IntroductiontoNeutroAlgebraicStructuresandAntiAlgebraicStructures(revisited)”, NeutrosophicSetsandSystems,vol.31,pp.1-16,2020.DOI:10.5281/zenodo.3638232. [4] Smarandache,F.,”NeutroAlgebraisaGeneralizationofPartialAlgebra”,InternationalJournalofNeu- trosophicScience,vol.2(1),pp.08-17,2020. Doi:10.5281/zenodo.3840761 47

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.