ebook img

Introduction to molecular simulation and statistical thermodynamics [draft] PDF

143 Pages·2009·0.638 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to molecular simulation and statistical thermodynamics [draft]

Introduction to Molecular Simulation and Statistical Thermodynamics ThijsJ.H.Vlugt DelftUniversityofTechnology Process&EnergyLaboratory Leeghwaterstraat44 2628CADelft,TheNetherlands JanP.J.M.vanderEerden CondensedMatterandInterfaces(CMI) DepartmentofChemistry UtrechtUniversity Utrecht,TheNetherlands MarjoleinDijkstra SoftCondensedMatterGroup DepartmentofPhysics UtrechtUniversity Utrecht,TheNetherlands BerendSmit DepartmentofChemicalEngineering 201GilmanHall UniversityofCalifornia Berkeley,CA94720-1462 DaanFrenkel FOMInstituteforAtomicandMolecularPhysics P.O.Box41883 1009DBAmsterdam TheNetherlands ii • Firstedition2008,lastupdateJune15,2009 • Copyright(cid:13)c 2008byT.J.H.Vlugt,J.P.J.M.vanderEerden,M.Dijkstra,B.Smit,D.Frenkel. All rights reserved. No part of this publication may be reproduced or transmitted in any fororbyanymeanswithoutpermissionfromthepublisher. • ISBN:978-90-9024432-7 • Thisbookandaccompanyingsoftwarecanbedownloadedfrom ∼ http://www.phys.uu.nl/ vlugt/imsst • Pleasereporterrors,corrections,andothersuggestionstot.j.h.vlugt(at)tudelft.nl • Disclaimer: Neither the publisher nor any of the authors guarantee that this book is free from error. Neither do they accept responsibility for any loss or damage (direct or conse- quential)thatresultsfromitsuse. • Pleasecitethisbookas: IntroductiontoMolecularSimulationandStatisticalThermodynamics ThijsJ.H.Vlugt,JanP.J.M.vanderEerden,MarjoleinDijkstra,BerendSmit,DaanFrenkel ∼ availablefromhttp://www.phys.uu.nl/ vlugt/imsst ISBN:978-90-9024432-7 Delft,TheNetherlands,2008 Contents Preface vii I StatisticalThermodynamics 1 1 ProbabilityofStatesinIsolatedSystems 3 1.1 IsolatedSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 HarmonicOscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 TheIdealGas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 EntropyandtheMostProbableDistribution . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 BoltzmannDistributioncorrespondstoaMaximuminlnW(N) . . . . . . 11 1.5 TheTemperatureofaDistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 SystemsatConstantTemperature 15 2.1 BoltzmannProbabilityintheCanonicalEnsemble . . . . . . . . . . . . . . . . . . 15 2.2 ThermodynamicVariablesFollowfromQ . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 EnergycanbeDerivedfromthePartitionFunction . . . . . . . . . . . . . 16 2.2.2 EntropycanbeDerivedfromthePartitionFunction . . . . . . . . . . . . . 16 2.2.3 FreeEnergyistheLogarithmofthePartitionFunction . . . . . . . . . . . 16 2.2.4 ChemicalPotentialfollowsdirectlyfromtheFreeEnergy . . . . . . . . . . 17 2.2.5 OtherThermodynamicVariables . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 FluctuationsDisappearintheThermodynamicLimit . . . . . . . . . . . . . . . . 19 2.4 TheThirdLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 ManyParticleSystems 23 3.1 FactorizationforIndependentDegreesofFreedom . . . . . . . . . . . . . . . . . . 23 3.2 TheIdealGas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 MultiplicityofEnergyLevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 MixturesofIdealGases 29 4.1 Non-ReactiveIdealGasMixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 IsomerizationReactioninanIdealGasMixture . . . . . . . . . . . . . . . . . . . . 30 4.3 MeanFieldApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 ReactiveIdealGasMixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 UsingMonteCarloSimulationstoComputeEnsembleAverages 37 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 The1DIsingSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3 The2DIsingSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.4 ComputingthePartitionFunctionofthe2DIsingModel . . . . . . . . . . . . . . 40 iv CONTENTS 5.5 TheMonteCarloMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.5.1 RandomSampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.5.2 ImportanceSampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.5.3 DetailedBalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.5.4 InitializationandLengthoftheSimulation . . . . . . . . . . . . . . . . . . 46 II MolecularSimulation 49 6 MonteCarloSimulationsofInteractingParticles 51 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 ComputerModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2.1 PeriodicBoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2.2 Lennard-JonesPairPotential . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2.3 PartitionFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3 ReducedUnits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.4 CalculatingthePressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.5 RadialDistributionFunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.6 DeviationfromtheIdealGasLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.6.1 VirialExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.6.2 EquationofState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.7 SimulationTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.7.1 InitialConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.7.2 TrialMoves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.8 Gas/LiquidEquilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7 MonteCarloSimulationsintheNPT andµVT Ensemble 67 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.2 Isobaric-Isothermal(NPT)Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.3 Grand-Canonical(µVT)Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 8 TheGibbsEnsemble 77 8.1 PhaseBehavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8.2 GibbsEnsembleMonteCarloSimulation . . . . . . . . . . . . . . . . . . . . . . . 77 8.3 ThePartitionFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8.3.1 ParticleDisplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.3.2 VolumeExchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.3.3 ParticleExchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.4 AnalyzingtheResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9 FreeEnergyCalculations 85 9.1 FreeEnergyandPartitionFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 9.2 DerivativesoftheFreeEnergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 9.3 UsinganArbitraryOrderParameter . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.4 Widomtestparticlemethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9.5 UmbrellaSampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.6 FreeenergyofSolids: EinsteinIntegration . . . . . . . . . . . . . . . . . . . . . . . 91 CONTENTS v 10 IntroductiontoMolecularDynamics 95 10.1 MolecularDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 10.3 ForceCalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 10.4 IntegrationoftheEquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . 97 10.5 OtherIntegrationAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 10.6 ComputerExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 10.7 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10.8 MolecularDynamicsatConstantTemperature . . . . . . . . . . . . . . . . . . . . 104 III Appendix 107 A Assignments 109 A.1 CapillaryCondensationbetweenTwoFlatWalls . . . . . . . . . . . . . . . . . . . 109 A.2 AdsorptionInsideaPore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 A.3 GibbsEnsembleSimulationofMethaneandEthane . . . . . . . . . . . . . . . . . 110 A.4 FreeEnergyDifferencebetweenfccandhcp . . . . . . . . . . . . . . . . . . . . . . 111 A.5 Grand-CanonicalMC;UmbrellaSamplinginN . . . . . . . . . . . . . . . . . . . . 112 A.6 CommonTangentConstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 B EssentialThermodynamics 115 B.1 ThermodynamicStates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 B.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 B.3 FirstLawofThermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 B.4 SecondLawofThermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 B.5 TheBasicMachinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 B.6 DefinitionsandRelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 B.7 MaxwellRelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 B.8 PhaseEquilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 C EssentialMathematics 123 C.1 Propertiesoflnxandexpx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 C.2 ChainRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 C.3 Derivativeofexp(ax)andln(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 C.4 TaylorExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 C.5 GeometricSeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 C.6 FactorialsandPermutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 C.7 BinomialandMultinomialDistributions . . . . . . . . . . . . . . . . . . . . . . . . 126 C.8 SomeIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 C.9 Stirling’sApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 C.10 LagrangeMultipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 C.11 Dirac’sdeltafunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Preface Statisticalthermodynamicsaimsatdescribingthemacroscopicpropertiesofsystemsthatconsist of many individual entities (e.g. particles, molecules, atoms). Nevertheless, the properties of the system are related to the microscopic properties and interactions of the individual entities. Therefore,statisticalthermodynamicsbridgesagapbetweendescriptionsattwodistinctlength scales(microscopicandmacroscopic). Instatisticalthermodynamicssystemsconsistofalargenumberofentitiesthatcanexchange energy with each other. The entities are often atoms, molecules or ions. The theory however is not restricted to these everyday ingredients for materials scientists. In colloid science the entities may be colloidal particles that consist millions of atoms. In fusion or fission reactors, theentitiesarephotons,protons,neutronsandotherelementaryparticles. Attheotherextreme, inastronomysomeofthepropertiesofgalaxiesandgalaxyclustersaredescribedusingstarsas entities. The aim of statistical thermodynamics is to derive macroscopic properties of systems from the microscopic properties of the particles that constitute the system. The macroscopic proper- tiesofasystemconsistingofmanyparticlesisbasedonprobabilitydistributions. Twotypesof distributionsformthebasisofthetheoryofstatisticalthermodynamics: 1. TheGaussianornormaldistribution; 2. TheBoltzmanndistribution. In order to get a feeling for the significance of these distributions we illustrate them with an all-day-livesystem. Imagine that we are in a kindergarten in Vienna, February 20, 1849. As always, the child that has its birthday chooses a game to play together. Today, at his fifth anniversary, Ludwig BoltzmannchoosestoplayBalls&Bucket. Anumberof,sayM,childrenofthekindergartenare sitting in a circle. Each child has a bucket in front of him or her. Initially the teacher randomly distributesnballsoverthebuckets. Theteacherselectsoneofthechildrenatrandom. Unlessthe child’sbucketisempty,thechildgivesatrandomoneballtohis/herleftorrightneighbor. The teacher randomly selects another child and this child also gives at random one ball to his/her left or right neighbor (unless the child’s bucket is empty). This process is continued and after t selections the teacher decides that the play is over. At this point, the total number of balls g collected by all girls is counted, as well as the number of balls collected by the child having his/herbirthday(heredenotedasB). Ludwig, being fond of numbers, has remembered all results of today’s and earlier Balls & Bucket plays. It was easy enough for him to calculate some averages. It seemed natural to him that the average number of balls hBi collected by the child having his/her birthday was close to n/M. He was not surprised either by his observation that the average number of balls hgi collectedbythegirlswascloseton/3,sincehisclasshadtwiceasmanyboysasgirls. viii Preface 0.2 0.6 0.5 0.15 0.4 P(g) 0.1 N(B) 0.3 0.2 0.05 0.1 0 0 0 5 10 15 20 0 2 4 6 8 10 g B Figure 1: Example of the Balls & Bucket game for M = 20 children (10 girls and 10 boys) and n = 20 balls. Left: Probability P(g) that the girls collected g balls. Right: Probability N(B) that LudwigcollectedBballs. Ludwignoticedalsothataplayinwhichg = 0wasveryrare. Thenumberoftimesthatthe childhavingitsbirthdaycollectednoballs,B = 0,waslargerthanthenumberoftimesthatthis child collected the average number of balls hBi = n/M. Ludwig understood that such general resultswouldbecomemorepredictableifthenumberofselectionstandthenumberofchildren M are very large. He supposed that in that case the probability distribution of g is sharply peaked around g = hgi, whereas the probability distribution of B would have its maximum at B = 0andwoulddecaymonotonouslywithB,seeFig. 1. Inchapters1and2weshallinvestigateinmoredetailtheresultswecanexpectforthisgame. Theseresultsareattheheartofstatisticalthermodynamics. Thereforewetaketheopportunityto introducesomeofthecentralformulasandconceptsalreadyhere. Instatisticalthermodynamics we refer to the limit of many children in a class (M → ∞) as the thermodynamic limit. Let us assumethattheinitialdistributionoftheballsoverthebucketsandtheselectionofthechildren are perfectly random. Then the number of balls g collected by the girls after t = 1 selection is Gaussiandistributedaroundtheaveragehgi = xnwithxbeingthefractionofgirlsintheclass: (cid:20) (g−hgi)2(cid:21) P(g) = C×exp − (1) 2σ2 HereP(g)istheprobabilitythatthegirlscollectedgballsandCisanormalizationconstantand √ σ = xn is thestandarddeviationforthis Balls&Bucketgame. Ifthenumberofselections tis largeenough, i.e. in thelimit t → ∞, thenthe numberofballs inLudwigs bucketis Boltzmann distributed: (cid:20) (cid:21) B N(B) = C0×exp − (2) hBi inwhichC0 isanormalizationconstant. Iftheteacherisnotideal,theinitialdistributionofballsisbiased. E.g. theteachermaygive more balls to the boys than to the girls. The effect of this unbalanced initialization will die out afteracertainnumberofselections. Instatisticalthermodynamicsthismeansthatsometimesa transient time t (cid:29) 1 is necessary before relevant averages can be taken. With a little reflection thereaderwillconvincehim/herselfthattheBoltzmanndistributionofballsinLudwigsbucket ix aftermanyselectionst(Eq. 2),alsoappliestothedistributionofballsoverthebucketsofallM childreninhisclassatagivenmomentoftime. Moreexplicitly,letthenumberofselectionstbe equal tothe number ofchildren M in theclass. Then the numberof times that Ludwig finds B ballsinhisbucketaftert = Mselections, isthesameasthenumberofchildrenfindingB balls in their buckets after t = 1 selections (provided that the initial distribution is unbiased). This illustratestheequivalenceofstudyingoneparticleforalongtimeandmanyparticlesforashort time. Instatisticalmechanicsthisequivalenceisreferredtoastheergodicityprinciple. FinallyonemightwonderhowgeneraltheBoltzmannandGaussiandistributionsare. Though we can not investigate or prove this rigorously, some plausible deductions can be made from the kindergarten example. The first key ingredient is that no balls disappear, they only are re- distributed. This translates to the conservation of energy in an isolated system. The second is thatnoballcanberemovedfromanemptybucket,correspondingtothefactthatamoleculecan nothavealowerenergythanits(well-defined)groundstateenergy. WouldtheBoltzmannalso occur for poker players? The role of the balls is played by the value of the different coins that theyuse. Aslongasthereisnobankthatabsorbssomeofthemoney,thetotalvalueintheplay is constant. Furthermore, the ground state of each player is well-defined (i.e. when the player is broke). If all players are equally strong their personal capitals eventually will be Boltzmann distributed. This property of the players translates to the equal a priori probability of states with equalamountofmoney. Chemistsandphysicistsareoftenmoreinterestedinsystemsofinteractingparticles(atoms or molecules) and how these microscopic interactions result in macroscopic (thermodynamic) properties. We will show that we can calculate all thermodynamic properties of a system once allpossiblestatesofthesystemandtheirenergyareknown. However,systemswithmorethan two interacting particles can usually not be solved analytically (i.e. finding all possible states and energies using pen and paper only) as the number of states is too large. Often, drastic ap- proximations have to be made for the model that describes our system of particles, as well as severe approximations to solve the theory analytically. There are only a few systems that can be solved exactly, e.g. the ideal gas, the harmonic oscillator (which closely resembles the Balls & Bucket game), the Einstein crystal and the two-dimensional Ising system. To circumvent this problem,onehastoresorttoothermethods. Thisisthereasonwhycomputersimulationsplay an important role in providing essentially “exact” results for problems in statistical thermody- namicswhichareotherwiseonlysolvablebyapproximatemethods,orareunsolvableanyway. Thepropertiesandstructureofinteractingsystemscaneasilybeobtainedinmolecularsimula- tions,andhence,simulationsareidealtostudymaterialsscience. Thistooltostudymany-body systemsbecameavailableintheearlyfiftiesofthetwentiethcentury. Inacomputersimulation, we mimic the real world. We define a model for the system we wish to study and we tell the computer the physical laws that should be satisfied. Simulations can therefore act as a bridge betweenexperimentsandtheory. There are three possible applications of simulations: (1) Simulations can be used to obtain predictionsof(bulk)propertiesofexistingornewmaterials,whenwefeedinaguessforthein- teractionsbetweentheatomsormolecules. Thesepredictionsare“exact”asnoapproximations are made. Moreover, we can carry out experiments on the computer that are difficult, impos- sible, or expensive in the laboratory (for example at extreme temperatures or pressures). (2) Computersimulationscanbeusedasatestoftheories. Agoodtheorygivesusanexplanation at a fundamental level of the generic phenomena we observe in our experiments. However, to makeatheorythatcanbesolvedanalytically,wehavetomakedrasticassumptions. Asatestof ourtheorywecancompareourtheoreticalresultswithexperiments. However,whenadisagree- ment is found, it is often not clear what the reason is of this discrepancy. Is the model wrong, aretheinputparameterswrong,oraretheassumptionstoodrastic? Computersimulationscan x Preface help us to discriminate between the good and bad assumptions in the theory. (3) Computer simulationscanalsobeusedtopredictnewphenomena,whichcanstimulatenewexperiments and the development of new theories. Examples of new phenomena found in simulations are, for instance, the freezing transition of hard spheres [1–4], the liquid crystalline phase behavior ofhardrods[5,6]anddiffusion-limitedaggregation[7]. This textbook consists of three parts. The aim of Part I is to familiarize the reader with the basicsofstatisticalthermodynamicswiththehelpofcomputersimulations. Thecomputerpro- grams and detailed instructions on how to run them can be downloaded from our website. In contrast to “traditional” textbooks on statistical thermodynamics, rigorous proofs have been replacedbycomputerexercisesfromwhichmanyofthebasicsconceptsfollowdirectly. Forex- ample,animportantpostulateofstatisticalthermodynamicsisthatanisolatedsystemisequally likely to be found in any of its eigenstates. It can be shown mathematically that this postulate resultsinthesecondlawofthermodynamics: anisolatedsystemevolvesinsuchawaythatthe entropyisatamaximum. Furthermore,theBoltzmanndistribution(Eq. 2)followsdirectlyfrom this. Inthisbook,wewillusethefollowingalternativeapproachtoillustratetheconsequences ofthispostulate. First,weintroduceasystemofharmonicoscillatorsthatcanexchangeenergy packetsasamodelforanisolatedsystem. Acomputerprogramwillbeusedtosimulateandto visualizethetime-evolutionofthissystem. Duringthisprocess, thenumberofvisitedstatesis recorded,fromwhichtheentropychangeiscomputeddirectly. Suchasimulationshowsthatit is extremely unlikely that the entropy of an isolated system decreases. In the same simulation, theBoltzmanndistributionfortheenergyofasingleoscillatorisfound,butonlywhenthenum- berofoscillatorsislargeenoughtoactasa“heatbath”atafixedtemperature. AttheendofPart Iwewillshowthatasthenumberofstatesoftypicalsystemsisextremelylarge,theMetropolis MonteCarlomethodwillberequiredtocomputethermodynamicaverages. In Part II a brief introduction to molecular simulations is presented. Simulation techniques like Monte Carlo and Molecular Dynamics simulations are discussed. In particular, we focus on simulations to study systems in various ensembles (canonical, isothermal-isobaric, grand- canonicalandtheGibbsensemble)andwecomputestatisticalpropertiesofinteractingLennard- Jones particles (equation of state, phase diagram, diffusion coefficient). In Part III some ad- vanced assignments are presented, as well as appendices that describe the basics of classical thermodynamicsandthebasicsofmathematics. We aim at undergraduate chemistry and physics students with some basic knowledge of classical thermodynamics. No knowledge about computer programming is required. We feel thatthisbookwillprovide(1)thenecessarybackgroundformoreadvancedcoursesinstatistical thermodynamicsand/ormolecularsimulation(2)sufficientbackgroundforstudyingthebook “Understanding Molecular Simulations” by Daan Frenkel and Berend Smit [8]. For a more in- depthdiscussionofmolecularsimulationtechniqueswealsoreferthereadertoRefs.[9–11].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.