ebook img

Introduction to modern analysis PDF

447 Pages·2003·1.906 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to modern analysis

Oxford Graduate Texts in Mathematics Series Editors R. Cohen S. K. Donaldson S. Hildebrandt T. J. Lyons M. J. Taylor oxford graduate texts in mathematics 1. Keith Hannabuss: An Introduction to Quantum Theory 2. Reinhold Meise and Dietmar Vogt: Introduction to Functional Analysis 3. James G. Oxley: Matroid Theory 4. N. J. Hitchin, G. B. Segal, and R. S. Ward: Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces 5. Wulf Rossmann: Lie Groups: An Introduction Through Linear Groups 6. Q. Liu: Algebraic Geometry and Arithmetic Curves 7. Martin R. Bridson and Simon M, Salamon (eds): Invitations to Geometry and Topology 8. Shmuel Kantorovitz: Introduction to Modern Analysis 9. Terry Lawson: Topology: A Geometric Approach 10. Meinolf Geck: An Introduction to Algebraic Geometry and Algebraic Groups Introduction to Modern Analysis Shmuel Kantorovitz Bar Ilan University, Ramat Gan, Israel 1 3 GreatClarendonStreet,OxfordOX26DP OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwidein Oxford NewYork Auckland CapeTown DaresSalaam HongKong Karachi KualaLumpur Madrid Melbourne MexicoCity Nairobi NewDelhi Shanghai Taipei Toronto Withofficesin Argentina Austria Brazil Chile CzechRepublic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore SouthKorea Switzerland Thailand Turkey Ukraine Vietnam OxfordisaregisteredtrademarkofOxfordUniversityPress intheUKandincertainothercountries PublishedintheUnitedStates byOxfordUniversityPressInc.,NewYork (cid:1)c OxfordUniversityPress2003 Themoralrightsoftheauthorhavebeenasserted DatabaserightOxfordUniversityPress(maker) Firstpublished2003 Firstpublishedinpaperback2006 Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, withoutthepriorpermissioninwritingofOxfordUniversityPress, orasexpresslypermittedbylaw,orundertermsagreedwiththeappropriate reprographicsrightsorganization.Enquiriesconcerningreproduction outsidethescopeoftheaboveshouldbesenttotheRightsDepartment, OxfordUniversityPress,attheaddressabove Youmustnotcirculatethisbookinanyotherbindingorcover andyoumustimposethesameconditiononanyacquirer BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressCataloginginPublicationData Dataavailable TypesetbyNewgenImagingSystems(P)Ltd.,Chennai,India PrintedinGreatBritain onacid-freepaperby BiddlesLtd.,King’sLynn ISBN 0–19–852656–3 978–0–19–852656–8 ISBN 0–19–920315–6(Pbk.) 978–0–19–920315–4(Pbk.) 1 3 5 7 9 10 8 6 4 2 To Ita, Bracha, Pnina, Pinchas, and Ruth This page intentionally left blank Preface This book grew out of lectures given since 1964 at Yale University, the Uni- versity of Illinois at Chicago, and Bar Ilan University. The material covers the usual topics of Measure Theory and Functional Analysis, with applications to Probability Theory and to the theory of linear partial differential equations. Somerelativelyadvancedtopicsareincludedineachchapter(excludingthefirst two):theRiesz–MarkovrepresentationtheoremanddifferentiabilityinEuclidean spaces (Chapter 3); Haar measure (Chapter 4); Marcinkiewicz’s interpola- tion theorem (Chapter 5); the Gelfand–Naimark–Segal representation theorem (Chapter 7); the Von Neumann double commutant theorem (Chapter 8); the spectralrepresentationtheoremfornormaloperators(Chapter9); theextension theoryforunboundedsymmetricoperators(Chapter10);theLyapounovCentral Limit theorem and the Kolmogoroff ‘Three Series theorem’ (Application I); the Hormander–Malgrangetheorem,fundamentalsolutionsoflinearpartialdifferen- tial equations with variable coefficients, and Hormander’s theory of convolution operators, with an application to integration of pure imaginary order (Applica- tion II). Some important complementary material is included in the ‘Exercises’ sections,withdetailedhintsleadingstep-by-steptothewantedresults.Solutions to the end of chapter exercises may be found on the companion website for this text: http://www.oup.co.uk/academic/companion/mathematics/kantorovitz. Ramat Gan S. K. July 2002 This page intentionally left blank Contents 1 Measures 1 1.1 Measurable sets and functions 1 1.2 Positive measures 7 1.3 Integration of non-negative measurable functions 9 1.4 Integrable functions 15 1.5 Lp-spaces 22 1.6 Inner product 29 1.7 Hilbert space: a first look 32 1.8 The Lebesgue–Radon–Nikodym theorem 34 1.9 Complex measures 39 1.10 Convergence 46 1.11 Convergence on finite measure space 49 1.12 Distribution function 50 1.13 Truncation 52 Exercises 54 2 Construction of measures 57 2.1 Semi-algebras 57 2.2 Outer measures 59 2.3 Extension of measures on algebras 62 2.4 Structure of measurable sets 63 2.5 Construction of Lebesgue–Stieltjes measures 64 2.6 Riemann versus Lebesgue 67 2.7 Product measure 69 Exercises 73 3 Measure and topology 77 3.1 Partition of unity 77 3.2 Positive linear functionals 79 3.3 The Riesz–Markov representation theorem 87 3.4 Lusin’s theorem 89 3.5 The support of a measure 92 3.6 Measures on Rk; differentiability 93 Exercises 97

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.