Title Page Page: iii Copyright Page Page: iv Contents Page: v Preface and Acknowledgments Page: ix 1. What Is Cognitive Modeling? Page: 1 The Use of Models Page: 1 Time Scales of Modeling Page: 5 Striving for a Goal Page: 5 Optimization Page: 8 TensorFlow Page: 13 Minimizing Energy or Getting Groceries Page: 13 2. Decision Making Page: 17 Minimization in Activation Space Page: 17 A Minimal Energy Model Page: 21 Cooperative and Competitive Interactions in Visual Word Recognition Page: 25 The Hopfield Model Page: 27 Harmony Theory Page: 29 Solving Puzzles with the Hopfield Model Page: 31 Human Memory and the Hopfield Model Page: 31 The Diffusion Model Page: 33 The Diffusion Model in Psychology Page: 35 3. Hebbian Learning Page: 37 The Hebbian Learning Rule Page: 37 Biology of the Hebbian Learning Rule Page: 40 Hebbian Learning in Matrix Notation Page: 41 Memory Storage in the Hopfield Model Page: 44 Hebbian Learning in Models of Human Memory Page: 48 4. The Delta Rule Page: 53 The Delta Rule in Two-Layer Networks Page: 53 The Geometry of the Delta Rule Page: 57 The Delta Rule in Cognitive Science Page: 61 The Rise, Fall, and Return of the Delta Rule Page: 65 5. Multilayer Networks Page: 69 Geometric Intuition of the Multilayer Model Page: 69 Generalizing the Delta Rule: Backpropagation Page: 72 Some Drawbacks of Backpropagation Page: 74 Varieties of Backpropagation Page: 76 Networks and Statistical Models Page: 82 Multilayer Networks in Cognitive Science: The Case of Semantic Cognition Page: 83 Criticisms of Neural Networks Page: 85 6. Estimating Parameters in Computational Models Page: 89 Parameter Space Exploration Page: 89 Parameter Estimation by Error Minimization Page: 91 Parameter Estimation by the Maximum Likelihood Method Page: 92 Applications Page: 99 7. Testing and Comparing Computational Models Page: 107 Model Testing Page: 108 Model Testing across Modalities Page: 114 Model Comparison Page: 116 Applications of Model Comparison Page: 120 8. Reinforcement Learning: The Gradient Ascent Approach Page: 123 Gradient Ascent Reinforcement Learning in a Two-Layer Model Page: 124 An N-Armed Bandit Page: 126 A General Algorithm Page: 127 Backpropagating RL Errors Page: 129 Three- and Four-Term RL Algorithms: Attention for Learning Page: 129 9. Reinforcement Learning: The Markov Decision Process Approach Page: 133 The MDP Formalism Page: 134 Finding an Optimal Policy Page: 138 Value Estimation Page: 138 Policy Updating Page: 142 Policy Iteration Page: 143 Exploration and Exploitation in Reinforcement Learning Page: 143 Applications Page: 145 Combining Gradient-Ascent and MDP Approaches Page: 149 Reinforcement Learning for Human Cognition? Page: 151 Open AI Gym Page: 151 10. Unsupervised Learning Page: 153 Unsupervised Hebbian Learning Page: 153 Competitive Learning Page: 156 Kohonen Learning Page: 158 Auto-Encoders Page: 161 Boltzmann Machines Page: 162 Restricted Boltzmann Machines Page: 166 11. Bayesian Models Page: 173 Bayesian Statistics Page: 173 The Rational Approach Page: 179 Bayesian Models of Cognition Page: 182 12. Interacting Organisms Page: 191 Social Decision Making Page: 191 Combining Information Page: 193 Game Theory Page: 193 Cultural Transmission and the Evolution of Languages Page: 198 To Conclude Page: 201 Conventions and Notation Page: 203 Glossary Page: 205 Hints and Solutions to Select Exercises Page: 207 References Page: 219 Index Page: 243
Description: