ebook img

Introduction to Medical Image Analysis PDF

185 Pages·2020·9.798 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Medical Image Analysis

Undergraduate Topics in Computer Science Rasmus R. Paulsen Thomas B. Moeslund Introduction to Medical Image Analysis Undergraduate Topics in Computer Science Series Editor Ian Mackie, University of Sussex, Brighton, UK Advisory Editors Samson Abramsky , Department of Computer Science, University of Oxford, Oxford, UK ChrisHankin ,DepartmentofComputing,ImperialCollegeLondon,London,UK Mike Hinchey , Lero – The Irish Software Research Centre, University of Limerick, Limerick, Ireland Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca, NY, USA Andrew Pitts , Department of Computer Science and Technology, University of Cambridge, Cambridge, UK HanneRiisNielson ,DepartmentofAppliedMathematicsandComputerScience, Technical University of Denmark, Kongens Lyngby, Denmark StevenS.Skiena,DepartmentofComputerScience,StonyBrookUniversity,Stony Brook, NY, USA Iain Stewart , Department of Computer Science, Durham University, Durham, UK ‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality instructional content for undergraduates studying in all areas of computing and information science. From core foundational and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authoredbyestablishedexpertsintheirfields,reviewedbyaninternationaladvisory board,andcontainnumerousexamplesandproblems,manyofwhichincludefully worked solutions. TheUTiCSconceptreliesonhigh-quality,concisebooksinsoftbackformat,and generallyamaximumof275–300pages.Forundergraduatetextbooksthatarelikely tobelonger,moreexpository,SpringercontinuestoofferthehighlyregardedTexts inComputer Science series, towhich we refer potential authors. More information about this series at http://www.springer.com/series/7592 Rasmus R. Paulsen (cid:129) Thomas B. Moeslund Introduction to Medical Image Analysis 123 Rasmus R. Paulsen ThomasB. Moeslund Department for AppliedMathematics Department ofArchitecture, Design, andComputer Science andMedia Technology Technical University of Denmark Aalborg University Kongens Lyngby,Denmark Aalborg, Denmark ISSN 1863-7310 ISSN 2197-1781 (electronic) Undergraduate Topics inComputer Science ISBN978-3-030-39363-2 ISBN978-3-030-39364-9 (eBook) https://doi.org/10.1007/978-3-030-39364-9 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface In recent years, there has been a tremendous progress in the use of automatic analysisofimagesandvideos.Thefieldhasevolvedfrombeingasmallerresearch area with applications not widely known by the public to have major impact on everydaylives.Forexampleinself-drivingcarsorfacetrackinginmobilephones. Thisrapidincreaseintheeverydayuseandtheaffiliatedincreaseinresearchimpact have also benefitted the life sciences, where medical image analysis plays a major role in modern diagnostics. Theaimofthebookistopresentthefascinatingworldofmedicalimageanalysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more intuitive. SomeofthekeyalgorithmsareexemplifiedinC-code.Pleasenotethatthecodeis neither optimal nor complete and merely serves as an additional input for com- prehending the algorithms. ThisbookisaresultofacollaborationbetweenDTUComputeattheTechnical University of Denmark (DTU) and the Department of Architecture, Design and Media Technology atAalborgUniversity, Denmark. It ispartly based on the book “Introduction to Video and Image Processing” [5]. For Instructors We recommend combining the more theoretical exercises found on the homepage with practical exercises where real images are processed. The tools used for practical image analysis is rapidly evolving. Currently, we are using MATLAB for practicalexercisesandslowlymovingtousingPythonwithforexampleOpenCV orscikit-image.FortimecriticalapplicationsC++usingagoodtoolkitlikefor exampleOpenCVisstillpreferred.Forexplorativeanalysisofimages,weoftenuse ImageJ. v vi Preface Acknowledgements We would like to thank the following for ideas, figures, and general input: Lars Knudsen, Andreas Møgelmose, Hans Jørgen Andersen, Moritz Störring, David Meredith, Rasmus Larsen, Michael Sass Hansen, Mikkel Stegmann, and Jens Michael Carstensen. Book Homepage Updates,exercisesandothermaterialwithconnectiontothebookcanbefoundon the book homepage: http://mediabook.compute.dtu.dk/. We hope you will enjoy this book! Kongens Lyngby, Denmark Rasmus R. Paulsen Aalborg, Denmark Thomas B. Moeslund January 2020 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Different Flavors of Image Processing. . . . . . . . . . . . . . . . 2 1.2 General Frameworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 The Chapters in This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 The Optical System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 The Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 The Imaging Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Digital Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 Image Coordinate Systems . . . . . . . . . . . . . . . . . . . . . 21 2.4.2 The Region-of-Interest (ROI) . . . . . . . . . . . . . . . . . . . 22 2.4.3 Binary Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.4 Label Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.5 Multi-spectral Images . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.6 16-Bit Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Image Storage and Compression. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 Lossless Compression and Image Formats . . . . . . . . . . . . . . . . 28 3.2 Lossy Compression and Image Formats . . . . . . . . . . . . . . . . . . 29 3.3 DICOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Binary Image Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.1 Chain Coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.2 Run-Length Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Point Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1 Gray-Level Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 The Image Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.1 Histogram Stretching . . . . . . . . . . . . . . . . . . . . . . . . . 41 vii viii Contents 4.3 Non-Linear Gray-Level Mapping. . . . . . . . . . . . . . . . . . . . . . . 44 4.3.1 Gamma Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.2 Logarithmic and Exponential Mapping . . . . . . . . . . . . 45 4.4 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.1 Automatic Thresholding . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Image Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.1 Applying Image Arithmetic. . . . . . . . . . . . . . . . . . . . . 51 4.5.2 Noise Reduction Using Pixelwise Summing. . . . . . . . . 52 4.5.3 Motion Detection Using Pixelwise Differencing . . . . . . 53 4.6 Programming Point Processing Operations . . . . . . . . . . . . . . . . 53 5 Neighborhood Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1 The Median Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.1 Rank Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2.1 Template Matching. . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.2 Edge Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Correlation Versus Convolution. . . . . . . . . . . . . . . . . . . . . . . . 72 6 Morphology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.1 Level 1: Hit and Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.1.1 Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1.2 Fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.2 Level 2: Dilation and Erosion . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2.1 Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2.2 Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Level 3: Compound Operations . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.1 Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.2 Opening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.3 Combining Opening and Closing . . . . . . . . . . . . . . . . 83 6.3.4 Boundary Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7 BLOB Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.1 BLOB Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.1.1 The Grass-Fire Algorithm. . . . . . . . . . . . . . . . . . . . . . 89 7.2 BLOB Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.2.1 BLOB Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.2.2 BLOB Bounding Box. . . . . . . . . . . . . . . . . . . . . . . . . 92 7.2.3 Bounding Box Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.2.4 Bounding Circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.2.5 Convex Hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.2.6 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Contents ix 7.2.7 Center of Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2.8 Perimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2.9 Circularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.3 BLOB Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.4 Cell Classification Using BLOB Analysis. . . . . . . . . . . . . . . . . 97 7.4.1 Training Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.4.2 Feature Selection and Feature Ranges . . . . . . . . . . . . . 98 7.4.3 Evaluation of Classification. . . . . . . . . . . . . . . . . . . . . 99 8 Color Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.1 What Is a Color? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.2 Representation of an RGB Color Image . . . . . . . . . . . . . . . . . . 105 8.2.1 The RGB Color Space . . . . . . . . . . . . . . . . . . . . . . . . 108 8.2.2 Converting from RGB to Gray-Scale. . . . . . . . . . . . . . 109 8.2.3 The Normalized RGB Color Representation. . . . . . . . . 110 8.3 Other Color Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.3.1 The HSI Color Representation . . . . . . . . . . . . . . . . . . 114 8.4 Color Thresholding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.4.1 Chroma-Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.5 Postscript on Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 9 Pixel Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.2 Minimum Distance Classification. . . . . . . . . . . . . . . . . . . . . . . 122 9.3 Parametric Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.4 Bayesian Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.5 When to Use the Different Classifiers. . . . . . . . . . . . . . . . . . . . 129 10 Geometric Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.1 Affine Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 10.1.1 Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 10.1.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.1.3 Rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.1.4 Shearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.1.5 Combining the Transformations . . . . . . . . . . . . . . . . . 134 10.2 Backward Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 10.3 Profile Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10.4 Other Geometric Transformations . . . . . . . . . . . . . . . . . . . . . . 137 10.5 Homography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 11.1 Feature-Based Image Registration . . . . . . . . . . . . . . . . . . . . . . 144 11.1.1 Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 11.1.2 Translation + Rotation = Rigid Transformation . . . . . . 149

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.