ebook img

Introduction to Mathematical Statistics PDF

762 Pages·2019·5.74 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Mathematical Statistics

Introduction to Mathematical Statistics Eighth Edition Global Edition Robert V. Hogg University of Iowa Joseph W. McKean Western Michigan University Allen T. Craig Late Professor of Statistics University of Iowa Director,PortfolioManagement: DeirdreLynch ManagingEditor,DigitalMedia,Global CoursewarePortfolioManager: PatrickBarbera Edition: GargiBanerjee PortfolioManagementAssistant: Morgan Manager,RightsandPermissions: Gina Danna Cheselka AssociateEditor,GlobalEdition: Shaoni ManufacturingBuyer: CarolMelville, Mukherjee LSCCommunications ContentProducer: LaurenMorse ManufacturingBuyer,GlobalEdition: ManagingProducer: ScottDisanno KayHolman ProductMarketingManager: YvonneVannatta ArtDirector: BarbaraAtkinson FieldMarketingManager: EvanSt. Cyr ProductionCoordinationandIllustrations: MarketingAssistant: JonBryant Integra SeniorAuthorSupport/TechnologySpecialist: CoverDesign: LuminaDatamatics JoeVetere CoverImage: AnnaMente/Shutterstock PearsonEducationLimited KAOTwo KAOPark HockhamWay Harlow Essex CM179SR UnitedKingdom andAssociatedCompaniesthroughouttheworld Visit us on the World Wide Web at: www.pearsonglobaleditions.com ©PearsonEducationLimited2020 The rights of Robert V. Hogg, Joseph W. McKean, and Allen T. Craig to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and PatentsAct1988. Authorized adaptation from the United States edition, entitled Introduction to Mathematical Statistics, 8th Edition, ISBN 978-0-13-468699-8, by Robert V. Hogg, Joseph W. McKean, and Allen T. Craig, published by Pearson Education © 2019. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saf- fronHouse,6–10KirbyStreet,LondonEC1N8TS.Forinformationregardingpermissions,request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department,pleasevisitwww.pearsoned.com/permissions/. Alltrademarksusedhereinarethepropertyoftheirrespectiveowners. Theuseofanytrademark inthistextdoesnotvestintheauthororpublisheranytrademarkownershiprightsinsuchtrade- marks,nordoestheuseofsuchtrademarksimplyanyaffiliationwithorendorsementofthisbook bysuchowners. PEARSON and ALWAYS LEARNING are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries. Unless otherwise indicated herein, any third-partytrademarksthatmayappearinthisworkarethepropertyoftheirrespectiveowners andanyreferencestothird-partytrademarks,logosorothertradedressarefordemonstrativeor descriptive purposes only. Such references are not intended to imply any sponsorship, endorse- ment, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationshipbetweentheownerandPearsonEducation,Inc. oritsaffiliates,authors,licenseesor distributors. This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide access to other Pearson digital products like MyLab and Mastering. ThepublisherreservestherighttoremoveanymaterialinthiseBookatanytime. ISBN10: 1-292-26476-4 ISBN13: 978-1-292-26476-9 eBookISBN13: 978-1-292-26478-3 BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary TypesetbyIntegraSoftwareServicesPvt. Ltd. Dedicated to my wife Marge and to the memory of Bob Hogg This page intentionally left blank Contents Preface 11 1 Probability and Distributions 15 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.1 Review of Set Theory . . . . . . . . . . . . . . . . . . . . . . 18 1.2.2 Set Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3 The Probability Set Function . . . . . . . . . . . . . . . . . . . . . . 26 1.3.1 Counting Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.3.2 Additional Properties of Probability . . . . . . . . . . . . . . 32 1.4 Conditional Probability and Independence . . . . . . . . . . . . . . . 37 1.4.1 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.5 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.6 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . 59 1.6.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 61 1.7 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . 63 1.7.1 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 1.7.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 67 1.7.3 Mixtures of Discrete and Continuous Type Distributions . . . 70 1.8 Expectation of a Random Variable . . . . . . . . . . . . . . . . . . . 74 1.8.1 R Computation for an Estimation of the Expected Gain . . . 79 1.9 Some Special Expectations . . . . . . . . . . . . . . . . . . . . . . . 82 1.10 Important Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 92 2 Multivariate Distributions 99 2.1 Distributions of Two Random Variables . . . . . . . . . . . . . . . . 99 2.1.1 Marginal Distributions . . . . . . . . . . . . . . . . . . . . . . 103 2.1.2 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 2.2 Transformations: Bivariate Random Variables . . . . . . . . . . . . . 114 2.3 Conditional Distributions and Expectations . . . . . . . . . . . . . . 123 2.4 Independent Random Variables . . . . . . . . . . . . . . . . . . . . . 131 2.5 The Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . 139 2.6 Extension to Several Random Variables . . . . . . . . . . . . . . . . 148 5 6 Contents 2.6.1 ∗Multivariate Variance-Covariance Matrix . . . . . . . . . . . 154 2.7 Transformations for Several Random Variables . . . . . . . . . . . . 157 2.8 Linear Combinations of Random Variables . . . . . . . . . . . . . . . 165 3 Some Special Distributions 169 3.1 The Binomial and Related Distributions . . . . . . . . . . . . . . . . 169 3.1.1 Negative Binomial and Geometric Distributions . . . . . . . . 173 3.1.2 Multinomial Distribution . . . . . . . . . . . . . . . . . . . . 174 3.1.3 Hypergeometric Distribution . . . . . . . . . . . . . . . . . . 176 3.2 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . 181 3.3 The Γ, χ2, and β Distributions . . . . . . . . . . . . . . . . . . . . . 187 3.3.1 The χ2-Distribution . . . . . . . . . . . . . . . . . . . . . . . 192 3.3.2 The β-Distribution . . . . . . . . . . . . . . . . . . . . . . . . 194 3.4 The Normal Distribution. . . . . . . . . . . . . . . . . . . . . . . . . 200 3.4.1 ∗Contaminated Normals . . . . . . . . . . . . . . . . . . . . . 207 3.5 The Multivariate Normal Distribution . . . . . . . . . . . . . . . . . 212 3.5.1 Bivariate Normal Distribution. . . . . . . . . . . . . . . . . . 212 3.5.2 ∗Multivariate Normal Distribution, General Case . . . . . . . 213 3.5.3 ∗Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 3.6 t- and F-Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 224 3.6.1 The t-distribution . . . . . . . . . . . . . . . . . . . . . . . . 224 3.6.2 The F-distribution . . . . . . . . . . . . . . . . . . . . . . . . 226 3.6.3 Student’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 228 3.7 ∗Mixture Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 232 4 Some Elementary Statistical Inferences 239 4.1 Sampling and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 239 4.1.1 Point Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 240 4.1.2 Histogram Estimates of pmfs and pdfs . . . . . . . . . . . . . 244 4.2 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 4.2.1 Confidence Intervals for Difference in Means. . . . . . . . . . 255 4.2.2 Confidence Interval for Difference in Proportions . . . . . . . 257 4.3 ∗Confidence Intervals for Parameters of Discrete Distributions . . . . 262 4.4 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 4.4.1 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 4.4.2 Confidence Intervals for Quantiles . . . . . . . . . . . . . . . 275 4.5 Introduction to Hypothesis Testing . . . . . . . . . . . . . . . . . . . 281 4.6 Additional Comments About Statistical Tests . . . . . . . . . . . . . 289 4.6.1 Observed Significance Level, p-value . . . . . . . . . . . . . . 293 4.7 Chi-Square Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 4.8 The Method of Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 306 4.8.1 Accept–Reject Generation Algorithm. . . . . . . . . . . . . . 312 4.9 Bootstrap Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 317 4.9.1 Percentile Bootstrap Confidence Intervals . . . . . . . . . . . 317 4.9.2 Bootstrap Testing Procedures . . . . . . . . . . . . . . . . . . 322 4.10 ∗Tolerance Limits for Distributions . . . . . . . . . . . . . . . . . . . 329 Contents 7 5 Consistency and Limiting Distributions 335 5.1 Convergence in Probability . . . . . . . . . . . . . . . . . . . . . . . 335 5.1.1 Sampling and Statistics . . . . . . . . . . . . . . . . . . . . . 338 5.2 Convergence in Distribution . . . . . . . . . . . . . . . . . . . . . . . 341 5.2.1 Bounded in Probability . . . . . . . . . . . . . . . . . . . . . 347 5.2.2 Δ-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 5.2.3 Moment Generating Function Technique . . . . . . . . . . . . 350 5.3 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 355 5.4 ∗Extensions to Multivariate Distributions . . . . . . . . . . . . . . . 362 6 Maximum Likelihood Methods 369 6.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 369 6.2 Rao–Cram´er Lower Bound and Efficiency . . . . . . . . . . . . . . . 376 6.3 Maximum Likelihood Tests . . . . . . . . . . . . . . . . . . . . . . . 390 6.4 Multiparameter Case: Estimation . . . . . . . . . . . . . . . . . . . . 400 6.5 Multiparameter Case: Testing . . . . . . . . . . . . . . . . . . . . . . 409 6.6 The EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 7 Sufficiency 427 7.1 Measures of Quality of Estimators . . . . . . . . . . . . . . . . . . . 427 7.2 A Sufficient Statistic for a Parameter . . . . . . . . . . . . . . . . . . 433 7.3 Properties of a Sufficient Statistic . . . . . . . . . . . . . . . . . . . . 440 7.4 Completeness and Uniqueness . . . . . . . . . . . . . . . . . . . . . . 444 7.5 The Exponential Class of Distributions . . . . . . . . . . . . . . . . . 449 7.6 Functions of a Parameter . . . . . . . . . . . . . . . . . . . . . . . . 454 7.6.1 Bootstrap Standard Errors . . . . . . . . . . . . . . . . . . . 458 7.7 The Case of Several Parameters . . . . . . . . . . . . . . . . . . . . . 461 7.8 Minimal Sufficiency and Ancillary Statistics . . . . . . . . . . . . . . 468 7.9 Sufficiency, Completeness, and Independence . . . . . . . . . . . . . 475 8 Optimal Tests of Hypotheses 483 8.1 Most Powerful Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 8.2 Uniformly Most Powerful Tests . . . . . . . . . . . . . . . . . . . . . 493 8.3 Likelihood Ratio Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 501 8.3.1 Likelihood Ratio Tests for Testing Means of Normal Distri- butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 8.3.2 Likelihood Ratio Tests for Testing Variances of Normal Dis- tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 8.4 ∗The Sequential Probability Ratio Test. . . . . . . . . . . . . . . . . 514 8.5 ∗Minimax and Classification Procedures . . . . . . . . . . . . . . . . 521 8.5.1 Minimax Procedures . . . . . . . . . . . . . . . . . . . . . . . 521 8.5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 8 Contents 9 Inferences About Normal Linear Models 529 9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529 9.2 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 9.3 Noncentral χ2 and F-Distributions . . . . . . . . . . . . . . . . . . . 536 9.4 Multiple Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 539 9.5 Two-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 9.5.1 Interaction between Factors . . . . . . . . . . . . . . . . . . . 548 9.6 A Regression Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 553 9.6.1 Maximum Likelihood Estimates. . . . . . . . . . . . . . . . . 554 9.6.2 ∗Geometry of the Least Squares Fit . . . . . . . . . . . . . . 560 9.7 A Test of Independence . . . . . . . . . . . . . . . . . . . . . . . . . 565 9.8 The Distributions of Certain Quadratic Forms. . . . . . . . . . . . . 569 9.9 The Independence of Certain Quadratic Forms . . . . . . . . . . . . 576 10 Nonparametric and Robust Statistics 583 10.1 Location Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 10.2 Sample Median and the Sign Test. . . . . . . . . . . . . . . . . . . . 586 10.2.1 Asymptotic Relative Efficiency . . . . . . . . . . . . . . . . . 591 10.2.2 Estimating Equations Based on the Sign Test . . . . . . . . . 596 10.2.3 Confidence Interval for the Median . . . . . . . . . . . . . . . 598 10.3 Signed-Rank Wilcoxon . . . . . . . . . . . . . . . . . . . . . . . . . . 600 10.3.1 Asymptotic Relative Efficiency . . . . . . . . . . . . . . . . . 605 10.3.2 Estimating Equations Based on Signed-Rank Wilcoxon . . . 607 10.3.3 Confidence Interval for the Median . . . . . . . . . . . . . . . 608 10.3.4 Monte Carlo Investigation . . . . . . . . . . . . . . . . . . . . 609 10.4 Mann–Whitney–Wilcoxon Procedure . . . . . . . . . . . . . . . . . . 612 10.4.1 Asymptotic Relative Efficiency . . . . . . . . . . . . . . . . . 616 10.4.2 Estimating Equations Based on the Mann–Whitney–Wilcoxon 618 10.4.3 Confidence Interval for the Shift Parameter Δ. . . . . . . . . 618 10.4.4 Monte Carlo Investigation of Power . . . . . . . . . . . . . . 619 10.5 ∗General Rank Scores . . . . . . . . . . . . . . . . . . . . . . . . . . 621 10.5.1 Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 10.5.2 Estimating Equations Based on General Scores . . . . . . . . 626 10.5.3 Optimization: Best Estimates . . . . . . . . . . . . . . . . . . 626 10.6 ∗Adaptive Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 633 10.7 Simple Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 10.8 Measures of Association . . . . . . . . . . . . . . . . . . . . . . . . . 645 10.8.1 Kendall’s τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 10.8.2 Spearman’s Rho . . . . . . . . . . . . . . . . . . . . . . . . . 648 10.9 Robust Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 10.9.1 Location Model . . . . . . . . . . . . . . . . . . . . . . . . . . 652 10.9.2 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 Contents 9 11 Bayesian Statistics 669 11.1 Bayesian Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 11.1.1 Prior and Posterior Distributions . . . . . . . . . . . . . . . . 670 11.1.2 Bayesian Point Estimation . . . . . . . . . . . . . . . . . . . 672 11.1.3 Bayesian Interval Estimation . . . . . . . . . . . . . . . . . . 676 11.1.4 Bayesian Testing Procedures . . . . . . . . . . . . . . . . . . 677 11.1.5 Bayesian Sequential Procedures . . . . . . . . . . . . . . . . . 678 11.2 More Bayesian Terminology and Ideas . . . . . . . . . . . . . . . . . 680 11.3 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686 11.4 Modern Bayesian Methods . . . . . . . . . . . . . . . . . . . . . . . . 693 11.4.1 Empirical Bayes . . . . . . . . . . . . . . . . . . . . . . . . . 696 A Mathematical Comments 701 A.1 Regularity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 701 A.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 B R Primer 707 B.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707 B.2 Probability Distributions. . . . . . . . . . . . . . . . . . . . . . . . . 710 B.3 R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 B.4 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 B.5 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 B.6 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 C Lists of Common Distributions 717 D Tables of Distributions 721 E References 729 F Answers to Selected Exercises 735 Index 747

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.