ebook img

Introduction to machine learning PDF

639 Pages·2014·3.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to machine learning

Introduction to Machine Learning Third Edition AdaptiveComputationandMachineLearning ThomasDietterich,Editor ChristopherBishop,DavidHeckerman,MichaelJordan,andMichael Kearns,AssociateEditors AcompletelistofbookspublishedinTheAdaptiveComputationand MachineLearningseriesappearsatthebackofthisbook. Introduction to Machine Learning Third Edition Ethem Alpaydın The MIT Press Cambridge, Massachusetts London, England ©2014MassachusettsInstituteofTechnology Allrightsreserved. Nopartofthisbookmaybereproducedinanyformbyany electronicormechanicalmeans(includingphotocopying,recording,orinforma- tionstorageandretrieval)withoutpermissioninwritingfromthepublisher. Forinformationaboutspecialquantitydiscounts,pleaseemail [email protected]. Typesetin10/13LucidaBrightbytheauthorusingLATEX2ε. PrintedandboundintheUnitedStatesofAmerica. LibraryofCongressCataloging-in-PublicationInformation Alpaydin,Ethem. Introductiontomachinelearning/EthemAlpaydin—3rded. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-262-02818-9(hardcover: alk. paper) 1. Machinelearning. I.Title Q325.5.A462014 006.3’1—dc23 2014007214 CIP 10987654321 Brief Contents 1 Introduction 1 2 SupervisedLearning 21 3 BayesianDecisionTheory 49 4 ParametricMethods 65 5 MultivariateMethods 93 6 DimensionalityReduction 115 7 Clustering 161 8 NonparametricMethods 185 9 DecisionTrees 213 10 LinearDiscrimination 239 11 MultilayerPerceptrons 267 12 LocalModels 317 13 KernelMachines 349 14 GraphicalModels 387 15 HiddenMarkovModels 417 16 BayesianEstimation 445 17 CombiningMultipleLearners 487 18 ReinforcementLearning 517 19 DesignandAnalysisofMachineLearningExperiments 547 A Probability 593 Contents Preface xvii Notations xxi 1 Introduction 1 1.1 WhatIsMachineLearning? 1 1.2 ExamplesofMachineLearningApplications 4 1.2.1 LearningAssociations 4 1.2.2 Classification 5 1.2.3 Regression 9 1.2.4 UnsupervisedLearning 11 1.2.5 ReinforcementLearning 13 1.3 Notes 14 1.4 RelevantResources 17 1.5 Exercises 18 1.6 References 20 2 SupervisedLearning 21 2.1 LearningaClassfromExamples 21 2.2 Vapnik-ChervonenkisDimension 27 2.3 ProbablyApproximatelyCorrectLearning 29 2.4 Noise 30 2.5 LearningMultipleClasses 32 2.6 Regression 34 2.7 ModelSelectionandGeneralization 37 2.8 DimensionsofaSupervisedMachineLearningAlgorithm 41 2.9 Notes 42 viii Contents 2.10 Exercises 43 2.11 References 47 3 BayesianDecisionTheory 49 3.1 Introduction 49 3.2 Classification 51 3.3 LossesandRisks 53 3.4 DiscriminantFunctions 55 3.5 AssociationRules 56 3.6 Notes 59 3.7 Exercises 60 3.8 References 64 4 ParametricMethods 65 4.1 Introduction 65 4.2 MaximumLikelihoodEstimation 66 4.2.1 BernoulliDensity 67 4.2.2 MultinomialDensity 68 4.2.3 Gaussian(Normal)Density 68 4.3 EvaluatinganEstimator: BiasandVariance 69 4.4 TheBayes’Estimator 70 4.5 ParametricClassification 73 4.6 Regression 77 4.7 TuningModelComplexity: Bias/VarianceDilemma 80 4.8 ModelSelectionProcedures 83 4.9 Notes 87 4.10 Exercises 88 4.11 References 90 5 MultivariateMethods 93 5.1 MultivariateData 93 5.2 ParameterEstimation 94 5.3 EstimationofMissingValues 95 5.4 MultivariateNormalDistribution 96 5.5 MultivariateClassification 100 5.6 TuningComplexity 106 5.7 DiscreteFeatures 108 5.8 MultivariateRegression 109 5.9 Notes 111 5.10 Exercises 112 Contents ix 5.11 References 113 6 DimensionalityReduction 115 6.1 Introduction 115 6.2 SubsetSelection 116 6.3 PrincipalComponentAnalysis 120 6.4 FeatureEmbedding 127 6.5 FactorAnalysis 130 6.6 SingularValueDecompositionandMatrixFactorization 135 6.7 MultidimensionalScaling 136 6.8 LinearDiscriminantAnalysis 140 6.9 CanonicalCorrelationAnalysis 145 6.10 Isomap 148 6.11 LocallyLinearEmbedding 150 6.12 LaplacianEigenmaps 153 6.13 Notes 155 6.14 Exercises 157 6.15 References 158 7 Clustering 161 7.1 Introduction 161 7.2 MixtureDensities 162 7.3 k-MeansClustering 163 7.4 Expectation-MaximizationAlgorithm 167 7.5 MixturesofLatentVariableModels 172 7.6 SupervisedLearningafterClustering 173 7.7 SpectralClustering 175 7.8 HierarchicalClustering 176 7.9 ChoosingtheNumberofClusters 178 7.10 Notes 179 7.11 Exercises 180 7.12 References 182 8 NonparametricMethods 185 8.1 Introduction 185 8.2 NonparametricDensityEstimation 186 8.2.1 HistogramEstimator 187 8.2.2 KernelEstimator 188 8.2.3 k-NearestNeighborEstimator 190 8.3 GeneralizationtoMultivariateData 192

Description:
The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task ca
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.