ebook img

Introduction to Linear Elasticity PDF

395 Pages·2018·11.219 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Linear Elasticity

Phillip L. Gould · Yuan Feng Introduction to Linear Elasticity Fourth Edition Introduction to Linear Elasticity (cid:129) Phillip L. Gould Yuan Feng Introduction to Linear Elasticity Fourth Edition PhillipL.Gould YuanFeng DepartmentofMechanicalEngineering SchoolofBiomedicalEngineering andMaterialsScience ShanghaiJiaoTongUniversity WashingtonUniversity Shanghai,China St.Louis,MO,USA ISBN978-3-319-73884-0 ISBN978-3-319-73885-7 (eBook) https://doi.org/10.1007/978-3-319-73885-7 LibraryofCongressControlNumber:2018935965 ©SpringerInternationalPublishingAG,partofSpringerNature1983,1994,2013,2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaims inpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpartof SpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Dedication from P.L. Gould To my children Elizabeth Sue Gould (of blessed memory) Nathan Charles Gould Rebecca Blair Carlisle Joshua Robert Gould Dedication from Yuan Feng To my family mother Huiling Li father Zijin Feng wife Long Huang and my son Samuel Baisheng Feng Preface The fourth edition of this book is inspired by the enduring importance of classical elasticity in the emerging fields of solid mechanics, especially biomechanics and materials engineering, as well as in the traditional fields of structural, mechanical, andaerospaceengineering. To repeat a quote from the preface of earlier editions, “Elasticity is one of the crowningachievementsofWesternculture”byourlatecolleagueProfessorGeorge Zahalak. It is this sentence, eloquently expressing my admiration for the creative efforts of the premier physicists, mathematicians, and mechanicians of the nine- teenth and twentieth centuries, that led us to try and popularize the basis of solid mechanics in this introductory text. Although most of the names mentioned in the courseofthedevelopmentofthetheoryintheearlychapters,suchasHooke,Euler, Lagrange, St. Venant, Poisson, Boussinesq, Lamé, and Rayleigh, date to the nine- teenth century and before, at least two Nobel Prize–winning physicists in the twentieth century made contributions to elasticity. They are Albert Einstein with thesummationconventionandMaxBornwhowrotehisdoctoralthesisonatopicin elasticity. Thebookisintendedtoprovideathoroughgroundingintensor-basedtheoryof elasticity,whichisrigorous intreatmentbutlimitedinscope. Whilethetraditional audienceforelasticityisgraduatestudentsinthefieldsmentionedabove,advanced undergraduateshaveincreasinglybecomeinterestedinthesubject.Thisisreflected bytheemergenceofabasiccourseinelasticityasareplacementforthetraditional Advanced Strength of Materials in some curriculums. The authors are indebted to many historical and some contemporary contributors to this subject, and have endeavoredtoselect,organize,andpresentthematerialinaconcisemanner. As before, the text is strongly influenced by a new generation of students who soughtoutmodernapplicationsofelasticitytoemergingfields.EricClayton,Kevin Kilgallon, Kevin Derendorf, Rebecca Veto, Chris Ward, and Michael Van Dusseldorp have made significant contributions. Also the careful collating of the textbyLindaBuckinghamisappreciated. vii viii Preface The larger blocks of new materials in the third edition of this text dealt with functionallygradedmaterialsandviscoelasticity.Thesematerialsweredrawnfrom the works of Professors B.V. Sakkar of the University of Florida and David Roylance of MIT, respectively, and their active assistance is appreciated. Many corrections to the second edition were submitted by Professor Charles Bert of the UniversityofOklahomaandbyourlatecolleagueProfessorS.Sridharanwhoalso class-tested the book over several years. To broaden the scope of the book to introduce some topics not traditionally covered in an introductory text but of importance to contemporary researchers, a brief discussion of nonlinear elasticity is presented along with the aforementioned chapter on viscoelasticity. Also the chapter on plates was expanded to include an introduction to thin shell theory basedonearlierworksoftheseniorauthor. Computational tools have been playing an important role in the research and applications of elasticity theories, both analytically and numerically. Therefore, in this edition, we introduce the usage of MATLAB in solving classical elasticity problems. The basics of using MATLAB are introduced in the first chapter with common commands summarized in appendices. To illustrate the application of the computationaltools,sampleproblemsaresolvedandpresentedasthelastsectionof eachchapter.Wehopethatthisadditionofcomputationalmaterialswillenhancethe understanding oftheelasticity theoriesand providean opportunitytolearnnumer- icalmethodsandtoolsviasolvingclassicalelasticityproblems. We continue to believe that calibration with classical analytical solutions is essentialtoestablishconfidence,togainefficiency,andtoquantifyerrorsinnumer- icallybasedresultsandtrustthatthestudentswhoundertakethestudyofthissubject willfinditstimulatingandrewarding. St.Louis,MO,USA PhillipL.Gould Shanghai,China YuanFeng Contents 1 IntroductionandMathematicalPreliminaries. . . . . . . . . . . . . . . . . 1 1.1 Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 VectorAlgebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ScalarandVectorFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 Gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3 Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.4 Divergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.5 Curl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.6 IntegralTheorems. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 IndicialNotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 CoordinateRotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 CartesianTensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.7 AlgebraofCartesianTensors. . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 OperationalTensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.9 ComputationalExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.10 FundamentalsofMATLAB. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.11 IntroductiontoMuPAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.12 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Traction,Stress,andEquilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 StateofStress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 TractionandCouple-StressVectors. . . . . . . . . . . . . . . 17 2.3 ComponentsofStress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 StressataPoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 StressonaNormalPlane. . . . . . . . . . . . . . . . . . . . . . 21 2.4.2 DyadicRepresentationofStress. . . . . . . . . . . . . . . . . 23 2.4.3 ComputationalExample. . . . . . . . . . . . . . . . . . . . . . . 24 ix x Contents 2.5 Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 PhysicalandMathematicalPrinciples. . . . . . . . . . . . . 27 2.5.2 LinearMomentum. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.3 AngularMomentum. . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.4 ComputationalExample. . . . . . . . . . . . . . . . . . . . . . . 30 2.6 PrincipalStress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.1 DefinitionandDerivation. . . . . . . . . . . . . . . . . . . . . . 30 2.6.2 ComputationalFormat,StressInvariants, andPrincipalCoordinates. . . . . . . . . . . . . . . . . . . . . . 33 2.6.3 ComputationalExample. . . . . . . . . . . . . . . . . . . . . . . 36 2.6.4 StressEllipsoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 StressesinPrincipalCoordinates. . . . . . . . . . . . . . . . . . . . . . . 39 2.7.1 StressesonanObliquePlane. . . .. . . . . . .. . . . . . .. . 39 2.7.2 StressesonOctahedralPlanes. . . . . . . . . . . . . . . . . . . 40 2.7.3 AbsoluteMaximumShearingStress. . . . . . . . . . . . . . 42 2.7.4 ComputationalExample. . . . . . . . . . . . . . . . . . . . . . . 43 2.8 PropertiesandSpecialStatesofStress. . . . . . . . . . . . . . . . . . . 43 2.8.1 ProjectionTheorem. . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.8.2 PlaneStress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.8.3 LinearStress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.8.4 PureShear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.8.5 HydrostaticStress. . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.9 ComputationalExampleswithMATLAB. . . . . . . . . . . . . . . . . 45 2.10 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3 Deformations. . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . .. . . . . . . .. 51 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 PhysicalInterpretationofStrainTensor. . . . . . . . . . . . . . . . . . 55 3.4 PrincipalStrain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 VolumeandShapeChange. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6 Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.7 Incompatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.8 NonlinearStrain–DisplacementRelations. . . . . . . . . . . . . . . . . 66 3.9 StrainEllipsoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.10 ComputationalExample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.11 ComputationalExampleswithMATLAB. . . . . . . . . . . . . . . . . 70 3.12 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 MaterialBehavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 UniaxialBehavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3 GeneralizedHooke’sLaw. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Contents xi 4.4 TransverseIsotropicMaterial. . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.5 FunctionallyGradedMaterials. . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6 ViscoelasticMaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.7 ThermalStrains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.8 PhysicalData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.9 ComputationalExampleswithMATLAB. . . . . . . . . . . . . . . . . 93 4.10 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Formulation,Uniqueness,andSolutionStrategies. . . . . . . . . . . . . . 99 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 DisplacementFormulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3 ForceFormulation. . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. 101 5.4 OtherFormulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.5 Uniqueness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.6 MembraneEquation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.7 SolutionStrategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.8 ComputationalExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.9 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 Extension,Bending,andTorsion. . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.2 PrismaticBarUnderAxialLoading. . . . . . . . . . . . . . . . . . . . . 111 6.3 CantileverBeamUnderEndLoading. . . . . . . . . . . . . . . . . . . . 116 6.3.1 ElementaryBeamTheory. . . . . . . . . . . . . . . . . . . . . . 116 6.3.2 ElasticityTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.4 Torsion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.4.1 TorsionofCircularShaft. . . . . . . . . . . . . . . . . . . . . . 125 6.4.2 TorsionofSolidPrismaticShafts. . . . . . . . . . . . . . . . 128 6.4.3 TorsionofEllipticalShaft. . . . . . . . . . . . . . . . . . . . . . 134 6.4.4 MembraneAnalogy. . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.5 ComputationalExampleswithMuPAD. . . . . . . . . . . . . . . . . . 141 6.6 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 7 Two-DimensionalElasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.2 PlaneStressEquations. . . .. . . . . . .. . . . . .. . . . . .. . . . . .. . 150 7.3 PlaneStrainEquations. . . .. . . . . . .. . . . . .. . . . . .. . . . . .. . 153 7.4 CylindricalCoordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.4.1 GeometricRelations. . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.4.2 TransformationofStressTensor andCompatibilityEquation. . . . . .. . . . . . .. . . . . . .. 156 7.4.3 AxisymmetricStressesandDisplacements. . . . . . . . . . 158 7.5 Thick-WalledCylinderorDisk. . . . . . . . . . . . . . . . . . . . . . . . 160 7.6 SheetwithSmallCircularHole. . . . . . . . . . . . . . . . . . . . . . . . 163

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.