Introduction to Lattices.and Orders : yy tsLairces an nC updal esa ate applica“‘on'~ « vicharged, sly are the only pratequisile evelis sitapleforadhanced undergait ear greduaty stucen: “esouree £9: qreche who, Aw98. Bee TOM deree strect tes. "YERSUIY AAPG earths ‘ Introduction to Lattices aud Order Second edition. B.A. Davey Ta Pre Chiversng ‘BL A. Priestley atest of Orford CAMBRLDGE ‘UNIVERSITY ERESS BUSS DEN@INT [WoT ‘spo, Now Yor Mabry Hae es Tu, eran, So Poy, PS Cece One “he ia) Ong Cig C2 SH, lita Uv Sut of om Car tity a en eomiaang IWoniog en i i oer TU © Goch Uae Pa 60 22 ‘latin nem a Re mt Pletal he Une gly Dime io Cambise Acta en fr ht in si om eB age Uae Noes no yeti fe pe wang “FURL sca oe ie pr ce wie fred is olin, Contents Peefoes tthe second etinn Prafoce tothe fat extn 1. Ordered eats dazed sete ‘Rananleg from social aeienoe ard computer avience Tagen seh diag seered sts CCondtrocting ond de eonstracting andere art owe al upsets ‘aps between orcore sets xereons 2 Lattices and complete latices ative as endo ete attic as alapbenic atructues Sabato, produce sad omeencrphissas Hee and Stee ‘Couple alin wa {Fence ‘Chain condsions and completeness Joiptredueible ceaaeats Esscenee 3. Format concept analysie Cutts aud thei couse ‘The fundamental theorem of consent latticas {Hom cheery co practice Enaceiee 4. Meda, distrib am Roctoan ni exsocastisying eddisonal idemtiies ‘The My Ny Tseorem oa inteesad anle algeean Boole terns and Usfauctive worl form Thwceeea 1. conten Representations the Gite wore Eiadog “loc for lati inte Hoolean algae ae cowbrietalyghrae Tinie diribatve lattices ave dowe-eb atone Tinto diowibutive lattices and ive orl srs ‘patacrhin Ener Cooputees Tntodusiag eongrocacee ongreenate ad dingrems “Tur lacie of congrnces of Ise eerie Complete tions and Galois comectons Chace operat ‘Complaze lrtacen crmeng ra hes algobatetttoee Gales comnscrone CComptsions Terie (CPDs and Repoint theorems CFOs CP Oe of paeil age upolt dome Colulnting Rich Raetate Beenie Dotan and infermation systems Data or compating metas vealed: yrs stems ‘sing lrpointtherrama ca alee domain aims Benrcine Maximal principles Do asia eleceat eet? Asda of Choioe Prine and inal one overs slgtheas aod downectlnttion visited omn's Lemma and the iu 6 = 13 ey 8 EREES nt 232 ant Contents Bucs 1. Regent: the gael cae Stone’ epreattaton thane or Booton algebras [Net LINDA. the Lindent sum elgséra Prietly'sspesetanion engen foe dstutve lata Distributive latices and Writiey space in partuerabip Enero Appenic As Lopologial loath Appendi 8: farther reading Motation tndex Indo Pécface to the sccond edition ‘This now edition of Faoduetion to Latins and Ones is eubstaielly iiaant hoz the igoal one pushed in 100, We live haa Ue ve ‘Vision gretly eabances the book's weflaes ud topicality. Our eral Sats lene remsin the sam to rode a toncbookielmedaction which ‘lows thele peruano ofthe oniept of axa i sgshe, Inge, Omapner ‘sionce and other elds and which mab the eet theory aocanihle vwlergoducta end bagianing radiate ahwenia io nerhametins and to Boeionas in alice aces, Ta prepaciy ths zew edition we base desi eniensively on our tsachirg expetionse ‘ver the past IU years end oa taf cents fom calleagues. We have taken sxcoueh of kancrtst derebpanents tess of application, im particular 'm compote seimce Aosta tae Grigtnal material iachided, but & bea been completely renga Some row material bas been ad. xsl cotably om Caleb oonneedins fd tspetcaieue end thine are many mar exe. ux sbjetves in re-eeengiag the material ave bens to proc slmontary ond ovation lise we euly an posible, fbr pedagogical rans, ‘to aremga th ehogters wo shut the Set part of the boc fore materia table fat sur, ish ours to make it exe fox particule intrest groupe fo pk out just the sections thy want. Originally, wo wrested coder gts fs acd began the algebra aca ‘of aioe uly ia Chapter 5. ‘hia neat that sone aie eopbistoed ‘and speciale tnleriel appeared erly on, in particular tbe Toeatene ‘oF CPOs, algebraic ation aod Aosaing. Wehavenon rod this and late log ule the restmant of the later tapi more edepeasat, We Inave moved irvard the pescatation of frmal concapt anal al \tnow previa sconereta,appitaen-orited introduction to completa lecices, to which the staal on Galois cnneetims and ou completions Js Leer Linked, "There aro numerous more Jowized repacagings of fvdividua] tice too, giving 2 acute presenta overall. Readett (the Bist edition who look atthe ew tahle of oateote wl appreiete ‘bw majo chee oration i ‘Matheratical modelling eomputer science at ae extrem Jy rapidly inthe est deoade. end this erected in che book. We dew ‘eteatin in partioula t: agus to te second edition be 4 our almorlodgtenmt of. the iupormince uF Galo comnertions fa foxmal rthods fr pogiom deveopmant and veritas, and the roved prnrntelion of Fics spores (Qur deb co theca wh bave pansened thane aivaees wl be clear om ‘erlet te which we aave apdated the spends [ew Appr B) ich giv snelins for freer reading Msny codlaguss, ia pet- fleur past and pretnt menhers of (88 Oxlord Univesity Computing Laborarory, sa seit us, ether by the igihis thee Veoks so pe pers have prove or shrug tier eammente "Ihe ara 20 mame Far usce attaoeladge toe wvence aul ix entsbutions nciridnally tee We ace ysicil70 caay readers of she fret edicion who dws oot stanton to fypogpaphlcal snd ie wor eer, Tey rae sere swith a Mara Dar for cock mibprint fond and Uber curresions are incomotate into the 1994 pxating, For the presear edison, ou snoare ‘hanks go to a tean of pmol reners based a8 Le Trobe Unies diene Hurthy, aided by Mnoslar Having, Sbamnsna Nae ed Rese Tanda. “They bave dann a ery coceal job of radiating erate hat pt into suse deaf iogoiating obscurity aad spotting 8 Sew ‘pos trom the fn edition that were previa tasted BAD ed EAS, owe 2001 Preface to the first edition ‘hs te Pa enol dev A ee ae a Tis nal Isis sunenprnsyspyLiious Te ackufesges the invecingy Anan dota onde thacey is plying on the muamatival rtgo cad is wad et Seadcus of matimcties and at profesional in adjacent. ores, inc oding Iogie, scree mathemntien and cempatr ence, lattice theory has boro taught co undergraduates ob La Trobe untvasty shave 1975, ae more eevedly at Oxford ates. The sig tr thon couses gece or ctrtug pot. The core af the Doel, “"Chapeera 1, 2 ane 5 to 8» provid a asic introdedon to ordeoe ete, tices bot Boole algae se rime) i exc ich bag bes cinerea over raney eum Tas pal ig te, Drier w Burg wi w ant ie Klowfhasion and Oras INDERS, Poona, 1968. Toon Reta) discusses the mater rele of order. The ‘bord plowcghy br adorn i wmogly vide a om spon ‘Segraus ul diagrammatic arguments are stieced ia both the tate ond eevee. Proweguittes ore mininsl. A rosdee sho hes vaben a couse in tn ax elgchra, group theory or disrets utbeanatics ould have uBio Uadkgcuved baowalge ud be fear wich our somaya wc ‘Te yes Tse Ue bes ‘Es boop se Cluutaay pombe Lave Seiad cusses tho formas of cat caity thoory aad oF univers clgebns. Lomever. wo have prepared the {rooed carey for tne wh wil progr to ba on weal aioe Suesry or uniered agebaa sad we have acludd, eb the endo of Chap Ye 3 oud B ed in Cuapter 8, Bend 1, come natal table for honours aber or Bons hrsoniog graionde werk. Inwtably Cura not spans Fr all Ube Lopes wo choulé avo Hed to cove; hist of ‘eeized “amptasio> willbe appari ina fo of tro acces. Within Ieeios thoy we bon penal ton empha oa dative Iti. We hereby complaoeat tore alvancul evs, ie which mevtlue and gee dal Isties te aleady wall Besced, The study of este dccToice leis fereareson ix Chapter 8) combina slshrsin, ander these and amaphtheart dns t provide rst whi re Hed ta thee ‘on et onstrnclnae pooned in Chapter 1, ate easy aceaanbe ta Tunderpredustes and sce somplste in therodves. Our collegues wll Aoateles aot be surprised that wo bow ao insted he extension of Ue representation theory Wo the nfive em. Ta cn those ware Of topology. this isvaducion to dnalty ie accompanied by a salfeontained rlue canairag the tall mumbar af topclogiel rete which we ace. Preface 0 the rs ition x Onler bos cecaty appeared, cameras tesco fo mary com putaliocal acl ‘he laoungh tater of dere stein Chapter 1 (Git auaphe ordnloving applicant eyapntalion) and cf ar ston structs fa Cheyne 2 guuvidee& Ba ouabain ne ti Fo Dull the theory of CFOs and donaning, Chapter @ecucbe Uwe wu Innes ard elses them to Scores infermasion syste Our eetoua Sn eceseely bie Callteral racing of apecniond texts, fa mich lhe comomer sient apical ioue ace Lilly daralopec, soap wisi: Hose aneting demein theory forthe fe size- Caper 4 dese wie Runa ‘aury (aad alee diese the ardor theneetio vanaf Zorn Kem) ‘Tine Capers it ative ae lalodution ta cedar theory fs cont, ter scenes, fer mathematicians eoeing to tae tie werk ka Chapier Lt we task matmanda im diferent drarioo etd prone cb sadinents sf Zul coaspl analysis. This sew field at alee ate fn impact op lattice theory Sa hg rach 20 ofa: seal scents Cerner ith dita nvalri. slr on debt the aban ‘of many unpiahed aniass0aensivits we cmoter one a fn scocept analysis In particle, coue notes by Dat Sel, Samet ‘brainy snd BH Roweos caticod us ir provicual unfair tersbery ‘i Jaff Souder notes for Le hardnare coven tatoo Mathematica ‘04 Computation andarereduates ia Orford intuenoed ce Leaman of Booka alten ‘the technolngcal develop-enteof che 13806 hoes mals cur cllab calon posible. One respective computers have fatally wodkad many octuzaal Lous of overtine, Ehetrene ml ban enblod yn €9 comma ists mest daly oud, in canjunetion with TEK, vo woe cll Sow pwinés nf remamraton ing that wold bas been iene ‘wih onmeionsl Caw?) mais TEX ns neal v9 to cote toe final abspe ofthe text snd hes alvea he fecal tori paeielar Jeoumemble hous of faa frustation any peopl deve our (heals. We ara wrtail ty David Teerah seu the etc of Combs University Pr foe thse petiat sadatence fad support sad te Dosey Tere for hor Felp Sn ering TH Aes, (Generations of atudeale have provided value coavnme edbck aed Ordos nderqradustes Mik Yoshi, Grab Pollut aad Andy Sander ea ear special mention for their prootseading. hase te dia 12 ‘i colle we Dave yevtered fo roud the ber in drain pasion Ine tn Mihaal Une, Relph McKee and JE. Nation, We une ln hank Rati Wi sac Harabaet ater fr sein advice ca cadcaph nalyin, Nolan risnonic cnminmmication, om gratly bebe ‘ited fom the partly Ao spl rth snag the hea fon feun, The exccad anchor grateflly adowutedges the Dnaist weisance x Poofuce tote fat elo of La Trobe lniwaity and the hemitaley of tn mathematics dear rent. Toually, a wey big Ub sou fer la support. end loeboarance sore to the Dovey fai: wile Helen and child Brea, Owes aod Git BAD. ent HAP. Scpromber £980 1 Ordered Sets ler, order, coder ~ it permesnes metheratis, nd everyday bie 19 00h on extend thot wo ube efor granted. It appears i muay gales fer, cond, thd, 5 Diam ops anal beter veran wore, NO- ‘iow of pogresaon,zrecedance and pratrenee maya he branghe ner ve umbrel. Our St cask ico erytallzo thee presi Ieeas co finvalee se wiaiouniy of leeslemonequalte Brats prssoring ratte aud Lace pues wf uke ey Hin per bu eo ‘ico the gums Sih ube ood they sud peeve subject. (sab give bach oy chance Onteral vote ‘Wt exactly do we eae by onder? More mabumatioly, her doe veia Ey an ordered se 12 Onte Ha of Ue fallowiag mubodny of tacemeats bes some ago db wth se (3) Vel ow 1 <u, ()) Two fit conn have common gemnaer (e) 22) io worse appreciation tor chan 3141502051 2) The plane a cede of icrvwing dts fom fhe mi oxo Mer cou, Venus, Eeeth, Mine, Tupier, Surana, Uranns, Neptaae, Plate (9) MedLes of te mls {1,24} and {2.8.5} fw aubont of ie ete, Dut (1,2,9,48) cousin bat (8) Gren any two dsbnel ea mumbers 6 aul Oy er @ is gonker ‘than 8 of 9g gester Da 2. Onis is uné 3 propety intrinsic to a single object. It conseme compauisn fetwoen ya of jer: Cs onal than I; Ms freer fiom the sim thea Hach; a sesphim mark above a eng, ese. Tr naticrutial terms, ox ordering is biaary cleion on aot of objects Tn onr exaenpes, Ca relation ay be tlw tobe es thon’ en Safa, “i eedescendan of om th ato all x ngs (b) 28d. Ue sabsets of (12.3.4 5} for of 8) in ‘Wher dtiguiotes an onder selation fom saz ater Hed of 2 letien? Firmly, aering St tranwiive “ran he facts Thal 0 ) dnl 110 yp oat daduce that O-< Lar emearer the tha: Se ‘ry anv Satu is acaex then Neptune 0 Mars ie nearer than Neptuna a Ordered cts Seoaedly ony ie aunts $i gue Ua $ Dat 3 ek igaee than 5. eon thes tno propectse ~ taney and saigymmstry — Aha! the chan of ardor re * Orde elatons aw of Inu yds aticl wd aotesiel. Outside soatheouatica, the stit notin i mote ccumnen. The tao Chaslse stall than eee geeraliy ten to mean ‘Chale etic tes Gaus Brus, with the posibiliy that Clicks ie the mame eight ae [Broce net inladed, Marbella ural allow equsly aud wri, for incomes. 8&3 and 3 = 22/7. Wo aall dol muinly wit aow-aviet der elation Finulye comment abou: comporablity,Stotemert (aera thy forte onleing on ee ral nettiers any wo dain ements ea euyced Tle pjeaty i yan ly nanny fain sag, Dal Biguoe univaadl, For eanpe, Weve entaiay vist humen beings A nd 10 sock thot A ie nota cearerant of 1 snd [Teoh 2 descent GFA, Nansen an ne in 4.2 Definitions. Lat P i av, An andr (oe paral onder oP is a tinny relation < oa P such that forall aK? C ® zas, 6) vey andy <a Sopty oy, fii) 2s y and y <2 mply re. theshortaand pact. Ususly we abil be elle oven and sey imply “Pig et onder set. Whereis ancesry to spec she order ration covertly ne wats (P<). On any oa, = ian der, the iasete ander. relation < on se: F which ia elaive end tranitive bat not aseezacly ‘bayonets fy caLed a quisborder or ey sous snfaors, 4 rooreer ‘An order relation & on P ques re ta avelaton < of set egal: cy in P ifapd only ite < y and 27. It poosble we rotate ‘onions (GH) stove ia terme of <, ado e-rgand rater WB aa the nadamental reuion: age Beenie 1 Other notstion sciatd with < ie predictable, Wenge 2 < y and y 2s lomcdaagiably, and wre 3 Gy to warm ‘5 < gis fal wd se ‘on, Les familie he yin | ced to dante nen-cmperabiis we ube gta gy and yz ‘We ‘alr del sgntomaticly with tho cousructm of now ordered sete froma exiting ones. Roeser, Ube i ane euch eneelion which ‘convenient to have sable iusnditaly. Let P be an oudesed est ster ste a au lt @ bo neubest of. Than @ indore un order eli from P; Gheae yO, Sy in Qil and only a Gy in P. Woeay i Caen Srounetaaes thst Q bat tho jndveed order cr han we ‘ih to be hove pls, the order nharited fom P. 1,3 Chains and antichsins, Let P boencedeod ast, Then Pisa chain Blocall eye Py Sth < yor y st thal i Cary lwo elem of P sre ornpasabla) alternative nates tana chain ate Uneasy ordered tet and totally exdcred set, Ar the opposite arzeme ftom s hain baa fuchsin, The ceded oe: P anantidinn ir y fa P only fe = Clr, with chs induced ons, any anont of ach (en anichata) ie hata on acticin), Let P be the clement se (0,1... 1}, Werte nto danoce the cbninootained by sivng P Ue onder a which Oe Leo <= fad for P separded ae an stichaia Any ott $ ray be converted ata fn sxicbin # by siviag § che dcrae one. 1LA Dederuemerplinnns We nud to be thle bo roogsiae when oro oncated ata, P ad), ae ‘vauinlhy the same’. Weaay that P and Q ‘ne (order jmonphie, and yaite 2G), there eee aman @ om P oto Q sooh that y tn 1 andl oly py) io. Ntoe ‘p22 ealad an ordericomerphc. Such a nep e Sachnlly mers the ce structure, It sneosemily bjecsve (that cas wo-on9 and onto: wing cefesivily anc aumiyamtry of, Et in @ ara thea ia, Hla) elu sole) See Bets) 40) mosey hose svere On te ker ban, a eer Bete map bbwcen ordre ae an 2edargoacrghina” ache, for amie, P= @ 22 nad den EE Twit —o eiog a bjetion oa ordrsomerisin gi P > oe a al Aart inv gt Qe We oly So Rs aD 8 ‘alan ln [We Rited io 2 ab x valey of tuations im which nde i prone (n12.w davelopad the vocabulary fv uestng thos examples syste, sally. We ennchnde this action ty preeertig formelly the inporand Sasevings caving iy sexe Frnt rotate) netne LS Number systems. These & ofrel mumbor, with is usu onda, forns a chain, Each of 9 (che natural aumbers 02,3.--}), © (eas ‘ Onde ate ‘roeges} aid (therationa] musbere} sso sa aust ondar saa it 1 hain Te eaah coy tha nce alin perpen ith he stato {fener a eset thor 0d pred of to lemon ety Beater chan 20 ali gear han 203. We donoze th act NU O} ( {01.21 ]} bs, Balowed with thecederin wich 0-2 1¢2-<..., tort Ro besomes theca Bort Inco Linory a Te ender uomumpbic to Re the momor Rein neorAtl Bom Ry to a ap sarloomerphina. A dire ‘crdicon tig ie dained ea flows. Wve ve fad aly ifthe ne Be Fy sch that En ow (thar ig, m alder 0) Than = fe an onar elation Of couse, {orn} ig aot a chaia. Ye suother order om My s ‘ntaorucsd in 1 2 fr age in Chapems 8 aad 1.6 Famiios ofsets. Let X be sty set. ‘The pomerct P(Xi, consating Fal suboas of ¥, ts ordered Wy web nelisour for 4, € PLN), wo (sine 4 B it and ouly ACB. ‘Au subset of P(X) iarits the incescn ordar. Such afl of ic be spect sct-thecsicelly. For wample it might comic tal face extwts of a afin ser 3. Me scaly, Fun ts {rie where X oumiea ame additonal atzucare, Her insane, X night Ihave en alec steuesro =i anekt be a proep, a wear spaea, oF fing. Bach of the following ian ordi net unde loin: the ot ofall sabgoupe of « group © idenoted Sch), and the at Pa noma mbyreage of C (Aanebae ASME fhe wot ofl mbepsens nds voce apace V (Ancted SobV fs the set ofall submage of a nag K, and the set of al dete of Tania of ots lao acea a char merhenosticl couteca, Far sang, bat (5,7) be a topological spacs. We may somsder ch famlics of open. Closed, snd clopen [roeing simullanmuely clesed and open) eabeets ‘of X on ordered aola under inclusion, Finaly we note ino ‘hvac ‘etn this las of ordarad sote whic is of fimeamental impetce Isto Thi ie the Eonily O(P) of down pelea en edna nt Pes introdaoed ia 227 romniial the seme ordered st as (P(2);5) manic elf in ¢ Aieent for, asthe et ef prodietes on 2. A prodicte ta statement ‘aking value T feue) ov ae F (Salo), Mave preci, a prelicne ox 1 sya function from v0 (T,F); bate ve con's ciiegiah betmer Ainerent way of spuclvag he same funerioa. Por croaplo the xp biG — {TF} gen by ple) = Tile 20 and le = Fie <0 & predicsta on H, hich car alternatively be spewed by vfa) = T ier fe Tard Fcchervice We wabe PC) forthe ait of predoctee Onder ete 5 cna £ and onder it by mapcuion: fox p,9 € PIX), po gifand oly if (eX [yah =T)S {2 eX ale) = 7} Deéne a nap vt AX) — PE) by igh i (2 cM [ala = Th hen fo a sreccikomnepbiey Veta (XI) and HX): S)- Tho Solio of» praicat eSundamental ia gi a i comer aleone Examples from social ecisnce and computer science edee and coder seactare ext ith compute rie, na al fx cal ovate i tony ays and om tay re Iva. Our aie fis ection 1 fo ghee a prc of why te aheuld be 30, rather thas fs eaplio in deal bow are thoory fe emplyed im applcntenn. The Giromion aupylie stotvetion foe aoe ofthe Wy we deveup Iker bm, but much off ie mot uss direct. We look Grae st ways a ck Cndad nts aris a ocialsee, 1.7 Oedered sets in the humanities end socal sciences. Below in ¢ pot-pourt of qumple to indlenbs how ordered acs cur in the sis, tieaoes aud elewhet. Fach of these ars fapptioatin 8 othe inontgetion of edaced ast 2 paca type, ‘Ag tnteral oedar on a 362 X 58 an arc talatnn such thal Uhre be mopping p of che pelos of X into cukinertle of HE such tht, foc 2 <y i X, the righi-houe cadgint of p(e} 's les thon the ote Juaed saint oF wii). “alaral oners mudel, or eran, Ue dite pane ver ‘rhish snimid speci age found or the comunience ct stylet pottery in ackacological atsta, 8 veriat on the definition requires aL the rage inerals toe of Ue see Iugie, woth problens of isch rmaasureneut in ind. ‘Tae probe oF starting te empress proforens of w 704 of ndvchal to rset cuentas ino eotoetD an lection exe tece, movketracarchers, pepbologits and weny ohare, ore ply, ben me jee and racking of then by = individons spies by r china, how should « chain be enastrbeved which beat elects the ind ‘kal? colctive prefiences? A etal choice funetion sia to ans ‘snipe of rankings esuglsranking which ccf: aconsearus, according te spasid ertain A Txnone theorea, do Wo Ke Aro, ater at res aoe of citaris whieh ace very aetaral but matoalyineampat Ible This parla eeult scr off 42 anlancbo of recat on soda fcoe thao. "The problem of scheduling scollstior of active or eves aie Jn many Jiferet costnts,euck a wansfckering auc eonfereace plan ‘dag. Many-auch pechlene inolve presence rosartings. Ror exer, 6 Onde ots contain stage in the seeamly ofa ar sna provede thera and con non ongasinr a Fin to bane to ahd oats estan bars ote ‘Pie cunpumationd complesiy of x ehodling probes doped ceils cly cm the onde sla lic daeibes the prvondencs eooeaia® Onder ents in the clesstiestion of obseisoa twe saa diis~ ul els, The fine i hates by ovr introductory cxamgls of the sevengemins ofthe planets inte herachenl le aor co thet ix ‘ono: fom obg mun ea by Figure Sl which cases wortainardard me socerdng to conn ertra. On a deep level tho ie ae Uiline cf eonsep: aaalyie provide a pom tachnigne fr olenfing ad fot snalysog coup ote fdas. From a et of objet ‘to tain sone CGrungin, the planeta) end save of arabes (fe the pletele, pce Iarga/anall,aovu/ao cise, aonr aunjfer drm sum), soap salle tots codered set which ceveals Sern! Mururhied strona 3d ‘enne notes groupings end depeadenciee among the objects ne the elutes. Chapler germ ri intrction eon anal ‘We row tom to order-thnovetia has sa.ng to enpnmer teem, (Our focus in this book limite to cots aspects ofthis gaming abject in whicscederd surortures vide wstal mothrmatial dale ‘ad ia this nkoductary chapter we socemttate ou the deveiption of ‘motels fer oee pariclarly impertant dacerrpe, Ia cach eats 2 Iacion > apres to cette te aout ue of Inst ae inforutive ex ‘wth the prin iterprettioa Sependhng on Uhe eons. ut belnre brewoling crampse of such inforierion orderings me need clay ow computations ae bs be view, 118 Programs, Speidug simistonlly, n pragram to perform » eour puesto elze Seerainiaput aod, the use huge, turns n corrapod= Sngomigat. The inp ane ontpr date may come fot way dilereat etanypee suek at natven yond, tring, Hat, ean oath, The term sats ie used to denote a signet, he shen tt By yroctam, of alae drawn ftom tae sppropratedatatppes. hv reer Aernninates ii iransions any given sat before ia eeacion ta astate sltecrarde: the Ustiel sud final tates may bo regarded a8 inocporer- jg the inpu: and outour data. Frequently, eds of 3 cunpetaton ‘ill be gererated stop by scan, nth aedtional informatica being geod sb cach sage. Nowerwiativa of » orem oommlly aiee Where uly pactal iniomatin eomatds the alin oulyat va Gute time. ‘Ayaan is deterministic, starting foe a given itil eat wil ‘ecminace inthe far lst coh tot a var, Noa-datmnera con oosuz whee che program's pedicalin allows for more thea coe valid solution, Fer ssample, «prograa Co compoce an okeger y such on vd ate 7 tun pt — 2 aight sort she ate 2 = 9 end terminate im ctor the falegeiory= ‘Wamu give thes esamples of cede ralsions oa dsinivpcs, In L.12 tw le al the Sates thear- examples havo in emo 1.9 Binary stings. Let E* be the set ofall Sita aay avinss, cst jg ll Gale sequanser of sarc and ancl the exnty abrng sins, ‘Saaing tha ‘ante eequencas, we get the st ol ll Fute or we Seqveote, which we denote hy Fem Me onder I by puting a 2 Hand only 2 w= 2 oF w is a Grito iil sufscng (tho technical (ecm prox) of ©, Thus, for example, 0100 < O16), O10 [200 and TOL < LOD... (ne infote lng of steentiag ence and 2c) sunage coy be “eugat ofa iormaticn excoed in leary fom: tho Tage che sting che gates the informotion content. Farcher, giver fay ating 9, we ay Late of eleneula a wit <9 a peeling, appeasivation lo e. La yariaua, ay Laeste sting iyi w sass we iba lates ase 79 clo procs, che limit of es Gite biel suttengs. ‘Oiniacly thie ample oa he generlion! by coidering traps ie Sauer deowa Goin afbeary alpaher of arabols LD Partial mans, Let ead ¥ be soncmpey stsaudf: XY a ‘aap, ‘Tae #rony be girded a seope woh assign a messber f(3} EY toon 26 X. Alteonstvey, and equivalently, fia determined by ity graph. namely graph f i= (2 fai)! oX Jw muuet of Xx ¥. Af che values of f are piven cn Lome subse, 2 of %, we have pantie inmotion coverde etermining J. Reval, we dain patil map froma X 12 ¥ co be asap c: 8, where dome, tho demain of, i: Aeateet Sof X: bine S ~ @ iv loved. TF dnno =X, ihee os «008 ‘ee lorena atl ap) from X to Y. The oot of pacial mepe fein X to ¥ a denoted (X00 ¥); if eontin ll otal zope rom X to Y¥ ocd ol partial detormotions of them. ‘Tho eluents ef (X= X) ae cll partie rtaye.on XW onler Jomo Yan flloma van orf (Xo ¥), defina o <7 if end only if dome C dams ard vie) rie) for al x c dome Eqaimlenty, @ = 1 and ony IT feagher © praph a PU ¥ Y) Naa that apsbont @ of YB the raph of afta map if and oniy if (eX (los) CC Gs EO) a 2-9) ma (oomtenairaling? computvion to determine a map f2 X—+ ¥, ve may chink off as bving bail up from tolans of information, eae Af which ie an slemene @ of (X ~o 9) with Gnibe dominsn ane which util species # aud phere o < fix the urdeciag defined above on