ebook img

Introduction to Higher Mathematics: Combinatorics and Graph Theory [lecture notes] PDF

48 Pages·2017·0.383 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Higher Mathematics: Combinatorics and Graph Theory [lecture notes]

Introduction to Higher Mathematics: Combinatorics and Graph Theory MelodyChan (cid:13)c 2017byMelodyChan VersionDate:November15,2017 Contents 1 Combinatorics 1 1.1 Thepigeonholeprinciple . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Puttingthingsinorder . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Bijections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Theprincipleofinclusion-exclusion . . . . . . . . . . . . . . . . . 11 1.6 TheErdo˝s-Ko-Radotheorem . . . . . . . . . . . . . . . . . . . . . 14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Graphtheory 21 2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Graphcoloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Ramseytheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Theprobabilisticmethod . . . . . . . . . . . . . . . . . . . . . . . 35 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A Appendix:Classexercises 41 A.1 Randomizedplaylists . . . . . . . . . . . . . . . . . . . . . . . . . 41 A.2 Catalanbijections . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A.3 Howmanytrees? . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Draft:November15,2017 2 (cid:13)c2017,M.Chan Chapter 1 Combinatorics Combinatoricsisthestudyoffinitestructuresinmathematics.Sometimespeoplere- fertoitas“theartofcounting,”andindeed,countingisatthecoreofcombinatorics, thoughthere’smoretoitaswell. 1.1 The pigeonhole principle Letusstartwithoneofthesimplestcountingprinciples.Thissaysthatifweput41 ballsinto40boxesanywaywewant,thenthereissomeboxcontainingatleasttwo balls.Moregenerally: Theorem1.1. (Pigeonholeprinciple)Letbandnbepositiveintegerswithb>n.If weplacebballsintonboxes,thensomeboxmustcontainatleasttwoballs. If that seems obvious, good. It is worth pausing for a moment and asking our- selveshowwewouldprovesuchastatement:i.e.convinceadoubtfulpersonbeyond anydoubtwhatsoeverusingareasonedargument.Howwouldyoudothat? Proof. We prove this statement by contradiction. Suppose we place b balls into n boxes,butthateachboxcontainsatmostoneball.Sinceeachboxcontainsatmost oneballandthereareatmostnboxes,wehavemostnballsintotal.Butthenumber ofballsbwasassumedstrictlygreaterthann,sowehavearrivedatacontradiction. Thereforesomeboxcontainsatleasttwoballs. Theorem 1.2. (Pigeonhole principle, general version) Suppose b,k,n are positive integerswithb > nk.Ifweplacebballsintonboxes,thensomeboxmustcontain atleastk+1balls. Proof. Thisproofisanexercise.TrytoimitatetheproofofTheorem1.1. This silly-sounding principle is actually quite useful. We just need to free our mindsfromthinkingliterallyaboutboxesandballs(orpigeonsandpigeonholes,asI Draft:November15,2017 1 (cid:13)c2017,M.Chan 2 1. Combinatorics prefer)andmoregenerallyaboutplacingsomefinitesetofthingsintoafixednumber ofcategories.Herearesomeexamples. Byanintegerwemeanawholenumber...,−2,1,0,1,2,.... Example1.3. Nomatterhowyouchoose6positiveintegers,twoofthemwilldiffer byamultipleof5. Proof. Weobservethattwonumbersdifferbyamultipleof5preciselywhentheir remaindersupondivisionby5arethesame.Thereareonly5possibleremainders 0,1,2,3,4 so the Pigeonhole Principle implies that given any six numbers, some pair of them havethesameremainder. Example1.4. Givenanyfivepointsinasquareofsidelength1,sometwoofthem areatdistance<0.75ofeachother. Youmightenjoyplayingwiththisexample.Forexample,ifyouareallowedto chooseonlyfourpointsinsteadoffive,youcanputthematthefourcornersofthe square.Butifyou havetochoosefivepoints,we’reclaimingthattwoofthemwill bewithin<0.75ofeachothernomatterwhat.Tryit! How can we prove this using the Pigeonhole Principle? What are the pigeons? Whatarethepigeonholes?Whatwewouldreallylikeistobeabletoidentifyfour regionsofthesquarethatcoverit,suchthateachregionisrelativelysmall:anytwo pointsinagivenregionhavedistance<0.75. Proof. Dividethesquareintofoursquaresofsidelength1/2.Givenfivepoints,the PigeonholePrincipleimpliesthattwoofthepointsliewithinthesmallsquare,and √ hence are at distance at most 2/2 ≈ 0.707 from each other (this number is the lengthofthediagonalofthesmallsquare). 1.2 Putting things in order Supposenisapositiveinteger. Howmanywaysaretheretoputndistinctsymbolsinanyorder? Let’strywritingdownallthewaystoorder1,...,nforsmallvaluesofn.Writ- ingdownsmallexamplesisoftenagoodstrategytogetstarted. Draft:November15,2017 (cid:13)c2017,M.Chan 1.2. Puttingthingsinorder 3 n=1: 1 n=2: 12, 21 n=3: 123, 132, 213, 231, 312, 321 n=4: 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321 Weget1,2,6,24,... Definition. Letnbeapositiveinteger.Thefactorialofnis n·(n−1)·····3·2·1 andiswrittenn!. Let us notice that n · (n − 1)! = n!. (Incidentally, for this reason, we define 0!=1.)Ourevidencesuggests: Proposition 1.5. Let n be a positive integer. There are n! ways to put n distinct symbolsinorder. Informally,wemightargue:Therearendifferentwaystopickthefirstsymbol. Havingdonethat,n−1unusedsymbolsremain,sotherearen−1waystopickthe secondsymbol.Proceedinginthisway,weconcludethattherearen(n−1)···1=n! waystoputallnsymbolsinorder. That’sprettygood,althoughformytaste,it’snotquiteaproof.Whatdoes“pro- ceedinginthisway”reallymean?Howdidweknowtomultiplyallthenumbers1 throughn,insteadof,say,addingthem,ordoingsomethingevenweirderwiththem? Proof. (ProofofProposition1.5)Byinductiononn.Whenn=1,thereisonlyone orderingpossible,sothepropositionholds. Next,assumethatn>1andthatwehavealreadyshownthatthereare(n−1)! waystoputn−1distinctsymbolsinorder.Nowwewishtocountthewaystoputn distinctsymbolsinorder.Let’sgroupthesewaysaccordingtowhatthefirstsymbol is. There are n such groups. Within each group, we may chop off the first symbol andnoticethattheremainingstringsconstituteallwaystoordertheremainingn−1 symbols.Thuseachgrouphassize(n−1)!.So,thereare (n−1)!+···+(n−1)!=n·(n−1)!=n! (cid:124) (cid:123)(cid:122) (cid:125) n ways. Draft:November15,2017 (cid:13)c2017,M.Chan 4 1. Combinatorics Hereisanillustrationoftheinductivestepoftheproof.Supposewealreadyknow thatthereare6waystoput3symbolsinorder,andwewishtodeducethatthereare 24waystoputsymbols1,2,3,4inorder.Wedividetheorderingsaccordingtowhat thefirstsymbolis.Thereare4groups,andeachgrouphassize6. 1234, 1243, 1324, 1342, 1423, 1432 2134, 2143, 2314, 2341, 2413, 2431 3124, 3142, 3214, 3241, 3412, 3421 4123, 4132, 4213, 4231, 4312, 4321 Let’sgeneralize: Proposition 1.6. (Multiplication rule) Suppose m ,...,m are positive integers, 1 n forsomen ≥ 1.Supposewehaveacollection C ofstringsofsymbolsoflengthn, suchthat • therearem symbolsappearingasthefirstsymbolofastringinC,and, 1 • foreachi=2,...,n,anyinitialsubstringofi−1symbolsappearinginCmay beextendedinexactlym waystoaninitialsubstringofisymbolsappearing i inC. Then |C|=m ·····m . 1 n Proof. Exercise.Proveitbyinductiononn,imitatingtheproofofProposition1.5. That sounds more complicated than it should. It’s basically saying that if you needtomakeasequenceofnchoices,andthenumberofchoicesyouhaveateach juncturedoesn’tdependonpastactions,thenallinallyoumaymultiplythenumber of choices you have at each juncture. (Think of the strings of symbols as all of the possiblewrittenrecordsofthechoicesyoumade.) Example1.7. Abinarystringisasequenceof0sand1s.Howmanybinarystrings oflengthkarethere? Solution. Bythemultiplicationrule,it’s 2·2···2=2k. (cid:124) (cid:123)(cid:122) (cid:125) k Example1.8. Supposethereare100studentsinaclass.Howmanywaysarethere tochooseapresident,avice-president,andatreasurer?Nostudentmayholdmore thanoneposition. Draft:November15,2017 (cid:13)c2017,M.Chan 1.3. Bijections 5 Solution. There are 100 choices of president. Having chosen a president, there are 99 choices of vice-president. Having made those choices, there are 98 choices of treasurer.Thereare100·99·98choicesinall.Notice,bytheway,that 100! 100·99·98= 97! usingawholelotofcancellation. Generalizing: Proposition 1.9. Suppose we have n distinct symbols and suppose k is a positive integerwithk ≤n.Thereare n·(n−1)···(n−k+1)=n!/(n−k)! (cid:124) (cid:123)(cid:122) (cid:125) k waystochoosekofthesesymbolsandplacetheminorder. Proof. ThisisaspecialcaseofProposition1.6.Thisnumberissometimesdenoted P(n,k), and referred to as the number of permutations of n objects taken k at a time. 1.3 Bijections This is as good a time as any to mention that bijections between finite sets are a combinatorialist’sfavoritetoolforcounting. Definition. 1. Afunctionf: X →Y iscalledaninjectionifforallx,x(cid:48) ∈X,f(x)=f(x(cid:48)) implies x = x(cid:48). (“Different elements of X are sent to different elements of Y.”)Suchafunctionisalsocalledone-to-one. 2. Afunctionf: X →Y iscalledasurjectionifforeveryy ∈Y,thereissome x∈X withf(x)=y.Suchafunctionisalsocalledonto. 3. Afunctionf: X →Y iscalledabijectionifitisbothinjectiveandsurjective. Drawing some cartoons of injective/surjective/bijective functions convinces us thatbijectionsareone-to-onecorrespondences.Alternatively,supposef isbothin- jective and surjective. Surjectivity implies that every element y ∈ Y is the image underf ofatleastonex ∈ X;injectivityimpliesthateveryelementy ∈ Y isthe imageunderf ofatmostonex∈X. Thus,wenoticethatcompositionsofbijectionsarebijections.Itisagoodexer- cisetoconvinceyourself(andthenprove)thefollowingbasicfactaboutbijections: Youcancheck: Draft:November15,2017 (cid:13)c2017,M.Chan 6 1. Combinatorics Proposition1.10. Afunctionf: X → Y isabijectionifandonlyiff hasatwo- sidedinverse,i.e.afunctiong: Y →X suchthatf ◦g =1 andg◦f =1 . Y X Now: IfX andY arefinitesetsinbijectivecorrespondencethentheyhavethe samenumberofelements. (“Bijective correspondence” simply means that there exists a bijection from one to theother.)Theclaimisobvious,right?Thenweshouldbeabletoproveit... Proof. Let|X| = n.Well,whatdoesthatactuallymean?Presumably,itmeansthat thereisabijectionbetweenX andtheset{1,...,n}.Ifso,thenbycomposingthat bijection with a bijection between X and Y, we obtain a bijection between Y and {1,...,n},so|Y|=nalso. Thinkoftheset{1,...,n}asthen-elementsetontheshelfattheNationalBureau ofStandards. ThepointisthatonewaytocounttheelementsinasetY issimplytoestablish a bijection between Y and some set X whose cardinality you already know. This comesupconstantly,andisextremelysatisfying!Infact,onecouldarguethatthisis thebest,mostexplicitwaystocountthings—thevariousotherwayswediscussare buttricksweusewhenunabletoproduceexplicitbijections. Wewillseetonsofexamples,startingstraightawayinthenextsection. 1.4 Subsets Definition. Forn≥0aninteger,wedenotetheset{1,...,n}by[n]. Somewhatstrangely,thisconventionincludes[0]=∅.Weask: Howmanysubsetsofann-elementsetarethere? Solution. We claim the answer is 2n. It’s good enough to count, by the bijective correspondence principle, subsets of your favorite n-element set. Mine is [n] = {1,...,n}. Notethatthereisanaturalbijectionbetweenthesubsetsof[n]andthelengthn binarystrings.Namely,givenA ⊆ [n],lete bethebinarystringwhoseith digitis A 1ifi∈Aand0ifi(cid:54)∈A.(Ithinkofe asa“membership-recordingstring.”)Argue A on your own that this is a bijection. Finally, we are done by Example 1.7, because wealreadycountedthebinarystringsoflengthn:thereare2nofthem. Definition. LetX beanyset.ThepowersetofX isthesetofallsubsetsofX;itis denotedP(X). Soif|X|=nthen|P(X)|=2n. Nowweconsidersubsetsofafixedsize.Fixk ≥0. Draft:November15,2017 (cid:13)c2017,M.Chan 1.4. Subsets 7 Howmanysubsetsofann-elementsethavesizek? Howmany3-elementsubsetsofa4-elementsetarethere,forexample?Let’slist them: {1,2,3},{1,2,4},{1,3,4},{2,3,4}. (Eventually, laziness will overtake us and we will simply write 123,124,134,234 instead.) So there are four of them. Now one way to compute that number, four, is as follows.Wealreadyknowthatthereare4·3·2=24waystochoose3elementsof the4andplacetheminorder.Now,considerthefunctionfrom {orderedtuples(a,b,c)ofdistinctelementsof{1,2,3,4}} to {3-elementsubsetsof{1,2,3,4}} that forgets the ordering. (This kind of function really is referred to as a forgetful function:afunctionwhosejobitistoforgetsomestuff.)Hereitis: (1,2,3) (1,2,4) (1,3,4) (2,3,4) (1,3,2) (1,4,2) (1,4,3) (2,4,3) (2,1,3) (2,1,4) (3,1,4) (3,2,4) (2,3,1) (2,4,1) (3,4,1) (3,4,2) (3,1,2) (4,1,2) (4,1,3) (4,2,3) (3,2,1) (4,2,1) (4,3,1) (4,3,2) ↓ ↓ ↓ ↓ {1,2,3} {1,2,4} {1,3,4} {2,3,4} Ingeneral,eachsetdownstairshas6=3·2·1elementssittingaboveit:that6is thenumberofwaystoorderthethreegivensymbols.Sowecompute4as?·6=24. Moregenerally: Definition. Let k,n ≥ 0 be integers with k ≤ n. Let (cid:0)n(cid:1) denote the number of k k-elementsubsetsofann-elementset.Suchexpressionsarecalledbinomialcoeffi- cients;wewillseewhyinabit. Proposition1.11. Wehave (cid:18) (cid:19) n ·k!=P(n,k). k (Recall that P(n,k) denotes the number of ways to choose k elements from an n- elementsetandorderthem.Therefore, (cid:18) (cid:19) n n! = . (1.1) k k!(n−k)! Draft:November15,2017 (cid:13)c2017,M.Chan 8 1. Combinatorics Proof. Thisproofisanexerciseforyou,imitatingtheargumentabove. YoucanalsowriteC(n,k)insteadof(cid:0)n(cid:1),forthenumberofcombinationsofnthings k takenkatatime,butthesedaysthenotation(cid:0)n(cid:1)ismorestylish. k Corollary1.12. Foreachn≥0,wehavethefollowingidentity: (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) n n n n 2n = + +···+ + . 0 1 n−1 n Proof. Bothsidescountthenumberofsubsetsof[n]. Thereissomuchtosayaboutthebinomialcoefficients!Let’sstartbyarranging themvisuallyonthepageinabigtriangle,whereineachrownstartingatn = 0, likethis: (cid:18) (cid:19) 0 0 (cid:18) (cid:19) (cid:18) (cid:19) 1 1 0 1 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) 2 2 2 2 1 0 ThisiscalledPascal’striangle;itwasknowntotheancients.Aportionofitisshown inFigure1.1. LookingatFigure1.1,letmakesomeobservations.Thesearejustguessesforthe moment: Conjecture1.13. 1. Eachnumber(besidesallthe1s)isthesumofthetwonumbersdirectlyabove it. 2. Thetriangleisleft-rightsymmetric. 3. Everynumberdownthemiddleiseven. 4. Everyrowisunimodal,meaningitfirstincreasesandthendecreases. 5. Ifnisprime,theneach(cid:0)n(cid:1),otherthan(cid:0)n(cid:1)and(cid:0)n(cid:1),isamultipleofn. k 0 n Itturnsoutthatthesestatementsaretrueingeneral. Proof. Let us prove the first statement, leaving the rest as homework. The claim amountstoprovingtheidentity (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) n n−1 n−1 = + . k k k−1 Draft:November15,2017 (cid:13)c2017,M.Chan

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.