de Gruyter Studies in Mathematics 36 Editors: Carsten Carstensen · Nicola Fusco Niels Jacob · Karl-Hermann Neeb de Gruyter Studies in Mathematics 1 Riemannian Geometry, 2nd rev. ed., Wilhelm P.A.Klingenberg 2 Semimartingales, Michel Me´tivier 3 Holomorphic Functions of Several Variables, Ludger Kaup and Burchard Kaup 4 Spaces of Measures, Corneliu Constantinescu 5 Knots, 2nd rev. and ext. ed., Gerhard Burde and Heiner Zieschang 6 Ergodic Theorems, Ulrich Krengel 7 Mathematical Theory of Statistics, Helmut Strasser 8 Transformation Groups, Tammo tom Dieck 9 Gibbs Measures and Phase Transitions, Hans-Otto Georgii 10 Analyticity in Infinite Dimensional Spaces, Michel Herve´ 11 Elementary Geometry in Hyperbolic Space, Werner Fenchel 12 Transcendental Numbers, Andrei B. Shidlovskii 13 Ordinary Differential Equations, Herbert Amann 14 Dirichlet Forms and Analysis on Wiener Space, Nicolas Bouleau and Francis Hirsch 15 Nevanlinna Theory and Complex Differential Equations, Ilpo Laine 16 Rational Iteration, Norbert Steinmetz 17 Korovkin-type Approximation Theory and its Applications, Francesco Altomare and Michele Campiti 18 Quantum Invariants of Knots and 3-Manifolds, Vladimir G.Turaev 19 Dirichlet Forms and Symmetric Markov Processes, Masatoshi Fukushima, Yoichi Oshima and Masayoshi Takeda 20 Harmonic Analysis of Probability Measures on Hypergroups, Walter R.Bloom and Herbert Heyer 21 Potential Theory on Infinite-Dimensional Abelian Groups, Alexander Bendikov 22 Methods of Noncommutative Analysis, Vladimir E. Nazaikinskii, Victor E. Shatalov and Boris Yu. Sternin 23 Probability Theory, Heinz Bauer 24 Variational Methods for Potential Operator Equations, Jan Chabrowski 25 The Structure of Compact Groups, 2nd rev. and aug. ed., Karl H.Hofmann and Sidney A.Morris 26 Measure and Integration Theory, Heinz Bauer 27 Stochastic Finance, 2nd rev. and ext. ed., Hans Föllmer and Alexander Schied 28 Painleve´ Differential Equations in the Complex Plane, Valerii I.Gromak, Ilpo Laine and Shun Shimomura 29 Discontinuous Groups of Isometries in the Hyperbolic Plane, Werner Fenchel and Jakob Nielsen 30 The Reidemeister Torsion of 3-Manifolds, Liviu I. Nicolaescu 31 Elliptic Curves, Susanne Schmitt and Horst G. Zimmer 32 Circle-valued Morse Theory, Andrei V. Pajitnov 33 Computer Arithmetic and Validity, Ulrich Kulisch 34 Feynman-Kac-Type Theorems and Gibbs Measures on Path Space, Jo´zsef Lörinczi, Fumio Hiroshima and Volker Betz 35 Integral Representation Theory, Jaroslas Lukesˇ, Jan Maly´, Ivan Netuka and Jiri Spurny´ Gerrit van Dijk Introduction to Harmonic Analysis and Generalized Gelfand Pairs ≥ Walter de Gruyter Berlin · New York Author Gerrit van Dijk Mathematical Institute Leiden University 2300 RA Leiden, Netherlands E-Mail: dijk@math.leidenuniv.nl Series Editors Carsten Carstensen Niels Jacob Department of Mathematics Department of Mathematics Humboldt University of Berlin Swansea University Unter den Linden 6 Singleton Park 10099 Berlin, Germany Swansea SA2 8PP, Wales, United Kingdom E-Mail: cc@math.hu-berlin.de E-Mail: n.jacob@swansea.ac.uk Nicola Fusco Karl-Hermann Neeb Dipartimento di Matematica Department of Mathematics Universita` di Napoli Frederico II Technische Universität Darmstadt Via Cintia Schloßgartenstraße 7 80126 Napoli, Italy 64289 Darmstadt, Germany E-Mail: n.fusco@unina.it E-Mail: neeb@mathematik.tu-darmstadt.de Mathematics Subject Classification 2000: 43-01, 43-02, 43A85, 22Bxx, 22Dxx Keywords: Fourier theory, harmonic analysis, Gelfand pairs, locally compact groups, Haar measures (cid:2)(cid:2) Printedonacid-freepaperwhichfallswithintheguidelinesoftheANSI toensurepermanenceanddurability. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.d-nb.de. ISBN 978-3-11-022019-3 (cid:2)Copyright2009byWalterdeGruyterGmbH&Co.KG,10785Berlin,Germany. Allrightsreserved,includingthoseoftranslationintoforeignlanguages.Nopartofthisbookmaybe reproducedinanyformorbyanymeans,electronicormechanical,includingphotocopy,recording,or anyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. PrintedinGermany. Coverdesign:MartinZech,Bremen. Typesetusingtheauthor’sLAT Xfiles:KayDimler,Müncheberg. E Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen. Preface Thisbookisintendedasanintroductiontoharmonicanalysis,andespeciallytomy favorite topic, generalized Gelfand pairs. It is aimed at advanced undergraduates or beginning graduate students. The scope of the book is limited, with the aim of enabling students to reach a level suitable for starting PhD-research. It is based on lectures I have given in several places, most recently at Kyushu University in Fukuoka, Japan (2008). Student input has strongly influenced the writing, and I hope that this book will help students to share my enthusiasm for the beautiful topicsdiscussed. Starting with the elementary theory of Fourier series and Fourier integrals, I proceed to abstract harmonic analysis on locally compact abelian groups. Here I follow the classical paper [7] of H. Cartan and R. Godement. It turns out that the vi Preface technique they developed works as well for Gelfand pairs .G;K/, where G is a not necessarily abelian locally compact group, and K is a compact subgroup of G. This approach is based on my thesis [51]. Finally I develop part of the theory of generalized Gelfand pairs .G;H/ where H is a closed, possibly noncompact, subgroupofG. ThebasicideasareduetoE.G.F.Thomas, seeforexample[49], and several applications are from my own work [52]. I also draw on papers by J. Faraut and V.F. Molchanov to deal with examples related to the generalized Lorentzgroup. There is relatively little expository literature on generalized Gelfand pairs, and thereisnostandardreference. Forfurtherreading,IrecommendmyKyushuLec- tureNote[53]. The main prerequisites for the book are elementary real, complex and func- tional analysis. In the later chapters we shall assume familiarity with some more advancedfunctionalanalysis,inparticularwiththespectraltheoryof(unbounded) self-adjoint operators on a Hilbert space. Some knowledge of distribution theory andLietheoryisalsoassumed. Referencestothesetopicsaregiveninthetext. ForterminologyandnotationswegenerallyfollowN.Bourbaki. Proofsfollow- ing theorems, propositions and lemmas are written in small print. The index will behelpfultotraceimportantnotionsdefinedinthetext. Thanks are due to my colleagues and students in several countries for their re- marks and suggestions. Especial thanks are due to Dr. J.D. Stegeman (Utrecht) whosehelpindevelopingthefinalversionofthemanuscripthasgreatlyimproved thepresentation. Leiden,September2009 GerritvanDijk The picture shows Snellius’ quadrant. Snellius (1580–1626), best known for Snell’s law on the breaking of light, used this quadrant to measure the earth. It is now on display in the Museum Boerhaave at Leiden. The building of the Leiden Mathematical Institute is named after Snellius. Areplicaofthequadrantwasofferedtomeontheoccasionofmyretirementandplacedinthehall oftheSnelliusbuilding. Contents Preface v 1 FourierSeries 1 1.1 Definitionandelementaryproperties . . . . . . . . . . . . . . . . 1 1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Uniformconvergence . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 SomefactsaboutconvergenceofFourierseries . . . . . . . . . . 5 1.5 Parseval’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 FourierIntegrals 7 2.1 Theconvolutionproduct . . . . . . . . . . . . . . . . . . . . . . 7 2.2 ElementarypropertiesoftheFourierintegral . . . . . . . . . . . . 8 2.3 Theinversiontheorem . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Plancherel’stheorem . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 ThePoissonsummationformula . . . . . . . . . . . . . . . . . . 13 2.6 TheRiemann–Stieltjesintegralandfunctionsofboundedvariation 13 2.7 Bochner’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.8 ExtensiontoRn . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 LocallyCompactGroups 25 3.1 Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Topologicalspaces . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Topologicalgroups . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Quotientspacesandquotientgroups . . . . . . . . . . . . . . . . 29 3.5 Someusefulfacts . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.6 Functionsonlocallycompactgroups . . . . . . . . . . . . . . . . 31 4 HaarMeasures 32 4.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Invariantmeasures . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 Weil’sformula. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Haarmeasuresforspecificgroups . . . . . . . . . . . . . . . . . 41 4.5 Quasi-invariantmeasuresonquotientspaces . . . . . . . . . . . . 41 4.6 TheconvolutionproductonG. PropertiesofL1.G/ . . . . . . . . 45 viii Contents 5 HarmonicAnalysisonLocallyCompactAbelianGroups 49 5.1 Positive-definitefunctionsandunitaryrepresentations . . . . . . . 49 5.2 Somefunctionalanalysis . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Elementarypositive-definitefunctions . . . . . . . . . . . . . . . 60 5.4 Fouriertransform,Riemann–LebesguelemmaandBochner’sthe- orem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.5 Theinversiontheorem . . . . . . . . . . . . . . . . . . . . . . . 66 5.6 Plancherel’stheorem . . . . . . . . . . . . . . . . . . . . . . . . 69 5.7 Pontryagin’sdualitytheorem . . . . . . . . . . . . . . . . . . . . 70 5.8 Subgroupsandquotientgroups . . . . . . . . . . . . . . . . . . . 73 5.9 Compactanddiscreteabeliangroups . . . . . . . . . . . . . . . . 74 6 ClassicalTheoryofGelfandPairs 75 6.1 Gelfandpairsandsphericalfunctions. . . . . . . . . . . . . . . . 75 6.2 Positive-definitesphericalfunctionsandunitaryrepresentations. . 79 6.3 Representationsofclassone . . . . . . . . . . . . . . . . . . . . 82 6.4 HarmonicanalysisonGelfandpairs . . . . . . . . . . . . . . . . 83 6.5 CompactGelfandpairs . . . . . . . . . . . . . . . . . . . . . . . 86 7 ExamplesofGelfandPairs 89 7.1 Euclideanmotiongroups . . . . . . . . . . . . . . . . . . . . . . 89 7.2 Thesphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3 Sphericalharmonics. . . . . . . . . . . . . . . . . . . . . . . . . 96 7.4 Sphericalfunctionsonspheres . . . . . . . . . . . . . . . . . . . 105 7.5 Realhyperbolicspaces . . . . . . . . . . . . . . . . . . . . . . . 106 8 TheoryofGeneralizedGelfandPairs 131 1 8.1 C vectorsofarepresentation . . . . . . . . . . . . . . . . . . . 131 8.2 InvariantHilbertsubspaces . . . . . . . . . . . . . . . . . . . . . 135 8.3 GeneralizedGelfandpairs . . . . . . . . . . . . . . . . . . . . . 141 8.4 InvariantHilbertsubspacesofL2.G=H/ . . . . . . . . . . . . . . 145 9 ExamplesofGeneralizedGelfandPairs 152 9.1 Non-Euclideanmotiongroups . . . . . . . . . . . . . . . . . . . 152 9.2 Pseudo-Riemannianrealhyperbolicspaces. . . . . . . . . . . . . 158 A TheAveragingMappingontheSpaceRnC1 195 A.1 SpecialcaseofatheoremofHarish-Chandra. . . . . . . . . . . . 195 A.2 ResultsofMéthée . . . . . . . . . . . . . . . . . . . . . . . . . . 197 A.3 ResultsofTengstrand . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 SolutionsinH0 ofasingularsecondorderdifferentialequation. . 205 (cid:2) A.5 ExpressionofMb.(cid:2)/intermsofBesselfunctions . . . . . . . . . 208 f Contents ix B TheAveragingMappingontheSpaceX 210 B.1 SpecialcaseofatheoremofHarish-Chandra. . . . . . . . . . . . 210 B.2 AnalogofMéthée’sresults . . . . . . . . . . . . . . . . . . . . . 210 B.3 Tengstrand’sresultsforX . . . . . . . . . . . . . . . . . . . . . 212 B.4 SolutionsinH0 ofasingularsecondorderdifferentialequation. . 213 (cid:2) Bibliography 217 Index 221
Description: