ebook img

Introduction to Graph and Hypergraph Theory PDF

303 Pages·2013·9.203 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Graph and Hypergraph Theory

I G NTRODUCTION TO RAPH H T AND YPERGRAPH HEORY No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. I G NTRODUCTION TO RAPH H T AND YPERGRAPH HEORY VITALY I. VOLOSHIN NovaSciencePublishers,Inc. NewYork (cid:13)c 2009byNovaSciencePublishers,Inc. Allrightsreserved. Nopartofthisbookmaybereproduced,storedinaretrievalsystemor transmittedinanyformorbyanymeans:electronic,electrostatic,magnetic,tape,mechanical photocopying,recordingorotherwisewithoutthewrittenpermissionofthePublisher. Forpermissiontousematerialfromthisbookpleasecontactus: Telephone631-231-7269;Fax631-231-8175 WebSite: http://www.novapublishers.com NOTICETOTHEREADER ThePublisherhastakenreasonablecareinthepreparationofthisbook,butmakesnoexpressedor impliedwarrantyofanykindandassumesnoresponsibilityforanyerrorsoromissions. No liabilityisassumedforincidentalorconsequentialdamagesinconnectionwithorarisingoutof informationcontainedinthisbook.ThePublishershallnotbeliableforanyspecial,consequential, orexemplarydamagesresulting,inwholeorinpart,fromthereaders’useof,orrelianceupon,this material. Independentverificationshouldbesoughtforanydata,adviceorrecommendationscontainedin thisbook.Inaddition,noresponsibilityisassumedbythepublisherforanyinjuryand/ordamage topersonsorpropertyarisingfromanymethods,products,instructions,ideasorotherwise containedinthispublication. Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationwithregardtothe subjectmattercoverherein.ItissoldwiththeclearunderstandingthatthePublisherisnotengaged inrenderinglegaloranyotherprofessionalservices. Iflegal,medicaloranyotherexpertassistance isrequired,theservicesofacompetentpersonshouldbesought.FROMADECLARATIONOF PARTICIPANTSJOINTLYADOPTEDBYACOMMITTEEOFTHEAMERICANBAR ASSOCIATIONANDACOMMITTEEOFPUBLISHERS. LibraryofCongressCataloging-in-PublicationData Voloshin,VitalyI.(VitalyIvanovich),1954- Introductiontographandhypergraphtheory/VitalyI.Voloshin. p. cm. Includesindex. ISBN978-1-61470-112-5 (eBook) 1. Graphtheory.2. Hypergraphs.I.Title. QA166.V6492009 511’.5–dc22 2008047206 PublishedbyNova SciencePublishers,Inc. <New York To Julian, Olesea and Georgeta for unlimited love and support The Essence of Mathematics is in its generalizations, The Beauty of Mathematics is in its ideas, The Power of Mathematics is in its absolute truth... Contents Preface xi I GRAPHS 1 1 BasicDefinitionsandConcepts 5 1.1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2. GraphModeling Applications . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3. GraphRepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4. Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5. BasicGraphClasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6. BasicGraphOperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.7. BasicSubgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.8. Separation andConnectivity . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 TreesandBipartiteGraphs 39 2.1. TreesandCycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2. TreesandDistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3. MinimumSpanningTree . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4. BipartiteGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 ChordalGraphs 51 3.1. Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2. Separators andSimplicialVertices . . . . . . . . . . . . . . . . . . . . . . 52 3.3. Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4. Distances inChordalGraphs . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5. Quasi-triangulated Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 PlanarGraphs 67 4.1. PlaneandPlanarGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2. Euler’sFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3. K andK ArenotPlanarGraphs . . . . . . . . . . . . . . . . . . . . . . 71 5 3,3 4.4. Kuratowski’sTheoremandPlanarityTesting . . . . . . . . . . . . . . . . . 73 4.5. PlaneTriangulations andDualGraphs . . . . . . . . . . . . . . . . . . . . 76 vii viii Contents 5 GraphColoring 79 5.1. Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2. DefinitionsandExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3. StructureofColorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.4. ChromaticPolynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.5. ColoringChordalGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.6. ColoringPlanarGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.7. PerfectGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.8. EdgeColoringandVizing’sTheorem . . . . . . . . . . . . . . . . . . . . 112 5.9. UpperChromaticIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Traversals andFlows 123 6.1. EulerianGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2. Hamiltonian Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3. NetworkFlows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 II HYPERGRAPHS 131 7 BasicHypergraphConcepts 135 7.1. PreliminaryDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2. Incidence andDuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.3. BasicHypergraph Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.4. BasicHypergraph Operations . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.5. Subhypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.6. Conformality andHellyProperty . . . . . . . . . . . . . . . . . . . . . . . 154 8 Hypertrees andChordalHypergraphs 161 8.1. Hypertrees andChordalConformalHypergraphs . . . . . . . . . . . . . . 161 8.2. AlgorithmsonHypertrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 8.3. CyclomaticNumberofaHypergraph . . . . . . . . . . . . . . . . . . . . . 174 9 SomeOtherRemarkableHypergraphClasses 181 9.1. BalancedHypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 9.2. Interval Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 9.3. NormalHypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 9.4. PlanarHypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 10 HypergraphColoring 193 10.1. BasicKindsofClassicHypergraph Coloring . . . . . . . . . . . . . . . . . 193 10.2. GreedyAlgorithmfortheLowerChromaticNumber . . . . . . . . . . . . 197 10.3. BasicDefinitionsofMixedHypergraph Coloring . . . . . . . . . . . . . . 201 10.4. GreedyAlgorithmfortheUpperChromaticNumber . . . . . . . . . . . . 207 10.5. Splitting-Contraction Algorithm . . . . . . . . . . . . . . . . . . . . . . . 213 10.6. Uncolorability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.7. UniqueColorability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.