ebook img

Introduction to function spaces on the disk PDF

190 Pages·2004·1.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to function spaces on the disk

Miroslav Pavlovi´c Introduction to Function Spaces on the Disk Matematiˇcki institut SANU Beograd 2004 Miroslav Pavlovi´c Faculty of Mathematics Belgrade University 11001 Belgrade, p.p. 550 Serbia Typeset by the author in LATEX. (cid:13)c M. Pavlovi´c and Matematiˇcki institut SANU. All rights reserved. No part of this publication may be reproduced, stored in a re- trievalsystem,ortransmitted,inanyformorbyanymeans,electronic,mechanical, photocopying, recording, or otherwise, without prior permission of the copyright owner. To Mirjana and Pavle Contents Preface 6 1 Quasi-Banach spaces 7 1.1 Quasinorm and p-norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Open mapping, closed graph . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 F-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 The spaces ‘p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Interpolation and maximal functions 18 2.1 The Riesz/Thorin theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Weak Lp-spaces and Marcinkiewicz’s theorem . . . . . . . . . . . . . . . . 22 2.3 Maximal function and Lebesgue points . . . . . . . . . . . . . . . . . . . . 25 2.4 The Rademacher functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 Nikishin’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6 Nikishin and Stein’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.7 Banach’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Poisson integral 38 3.1 Harmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Borel measures and the space h1 . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Radial limits of the Poisson integral . . . . . . . . . . . . . . . . . . . . . 45 3.4 The spaces hp and Lp(T) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 The Littlewood/Paley theorem . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6 Harmonic Schwarz lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Subharmonic functions 55 4.1 Basic properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Properties of the mean values . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 Integral means of univalent functions . . . . . . . . . . . . . . . . . . . . . 62 4.4 The subordination principle . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 The Riesz measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.6 A Littlewood/Paley theorem . . . . . . . . . . . . . . . . . . . . . . . . . 70 5 Classical Hardy spaces 73 5.1 Basic properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 The space H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Blaschke product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.4 Inner and outer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5 Composition with inner functions . . . . . . . . . . . . . . . . . . . . . . . 88 4 6 Conjugate functions 92 6.1 Harmonic conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2 Riesz projection theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3 Applications of the projection theorem . . . . . . . . . . . . . . . . . . . . 99 6.4 Aleksandrov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.5 Strong convergence in H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.6 Quasiconformal harmonic homeomorphisms . . . . . . . . . . . . . . . . . 104 7 Maximal functions, interpolation, coefficients 110 7.1 Maximal theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2 Maximal characterization of Hp . . . . . . . . . . . . . . . . . . . . . . . . 114 7.3 “Smooth” Ces`aro means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.4 Interpolation of operators on Hardy spaces . . . . . . . . . . . . . . . . . 119 7.5 On the Hardy/Littlewood inequality . . . . . . . . . . . . . . . . . . . . . 123 7.6 On the dual of H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8 Bergman spaces: Atomic decomposition 129 8.1 Bergman spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.2 Reproductive kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.3 The Coifman/Rochberg theorem . . . . . . . . . . . . . . . . . . . . . . . 133 8.4 Coefficients of vector-valued functions . . . . . . . . . . . . . . . . . . . . 137 9 Subharmonic behavior 143 9.1 Subharmonic behavior and Bergman spaces . . . . . . . . . . . . . . . . . 143 9.2 The space hp, p<1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.3 Subharmonic behavior of smooth functions . . . . . . . . . . . . . . . . . 148 10 Lipschitz spaces 154 10.1 Lipschitz spaces of first order . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.2 Lipschitz condition for the modulus. . . . . . . . . . . . . . . . . . . . . . 158 10.3 Lipschitz spaces of higher order . . . . . . . . . . . . . . . . . . . . . . . . 160 10.4 Growth of derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11 Lacunary series 170 11.1 Lacunary series in Hp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11.2 Karamata’s theorem and Littlewood’s theorem . . . . . . . . . . . . . . . 172 11.3 Lacunary series in C[0,1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 11.4 Lp-integrability of lacunary series on (0,1) . . . . . . . . . . . . . . . . . . 178 Bibliography 182 Index 187 5 Preface This text contains some facts, ideas, and techniques that can help or motivate the reader to read books and papers on various classes of functions on the disk and the circle. The reader will find several well known, fundamental theorems as well as a number of the author’s results, and new proofs or extensions of known results. Most of assertions are proved, although sometimes in a rather concise way. A number of assertions are named by Exercise, while certain assertions are collected in Miscellaneous or Remarks; most of them can be treated by the reader as exercises. ThereaderisassumedtohavegoodfoundationinLebesgueintegration,complex analysis, functional analysis, and Fourier series, which means in particular that he/she had a good training through these areas. It is of some importance that the reader can accept the following: Throughout this text, constants are often given without computing their exact values. In the course of a proof, the value of a constant C may change from one occurrence to the next. Thus, the inequality 2C 6C is true even if C >0. Acknowledgment I want to express my appreciation to those who pointed out to me several typos as well as suggestions for improvement. In particular, I want to mention the detailed comments from Professor Miroljub Jevti´c and Professor Miloˇs Arsenovi´c. I also want to express my deep gratitude to Mathematical Institute of Serbian Academy of Arts and Sciences and to the Faculty of Economics, Finance and Ad- ministration, Belgrade, for financial support. Cvetke and Belgrade, 20 March – 22 April 2003. 6 1 Quasi-Banach spaces In this text we mention only two examples of locally convex spaces: h(Ω), the space of all complex-valued functions harmonic in Ω ⊂ C, and its subspace H(Ω) consisting of analytic functions. For our purposes, the class of locally bounded spaces is more important. By Kolmogorov’s theorem, the intersection of this class with the class of locally convex spaces consists precisely of normable spaces. The topologyofalocallyboundedspacecanbedescribedbya“quasinorm”;conversely, a “quasinormable” space is locally bounded. Intheclassofquasi-Banachspaces,thereholdthe“basicprinciplesoffunctional analysis.” A concise discussion of these principles is contained in Section 1.3 and, inthecontextofF-spaces,in1.4. Somepropertiesof‘p arestated,withoutproofs, in Section 1.5. 1.1 Quasinorm and p-norm Let X be a (complex) vector space. A functional k·k: X 7→ [0,∞) is called a quasinorm if the following conditions hold: kf +gk6K(kfk+kgk), (1.1) where K (>1) is a constant independent of f,g ∈X; and kfk>0 (f 6=0), kλfk=|λ|kfk (λ∈C). (1.2) The couple (X,k·k) is then called a quasinormed space. The standard example areLebesguespaces: ifµisapositivemeasuredefinedonasigma-algebraofsubsets of a set S, then the space Lp(µ) = Lp(S,µ) = Lp(S) (0 < p 6 ∞) consists of all measurable complex-valued functions f on S for which (cid:18)Z (cid:19)1/p kfk=kfk = |f|pdµ <∞, p S with the usual interpretation in the case p = ∞. When p < 1, this functional is not a norm but satisfies (1.1) with K =21/p−1 and, moreover, kf +gkp 6kfkp+kgkp. (1.3) A functional satisfying (1.3) and (1.2) is called a p-norm. From (1.3) it follows that kf +f +···+f kp 6kf kp+kf kp+···+kf kp. 1 2 n 1 2 n A similar inequality holds in the general case although a quasinorm need not be a p-norm for any p. 7 8 1 Quasi-Banach spaces 1.1.1 Lemma If k·k is a quasinorm on X, then there exist constants p ∈ (0,1) and C 64 such that kf +f +···+f kp 6C (cid:0)kf kp+kf kp+···+kf kp (cid:1) (1.4) 1 2 n 1 2 n for every finite sequence f ,...,f ∈X. 1 n From this one can deduce that X is “p-normable” for some p>0. 1.1.2 Theorem (Aoki/Rolewicz) If k · k is a quasi-norm on X, then there is p > 0 and a p-norm |||·||| on X such that kfk/C 6 |||f||| 6 kfk, f ∈ X, where C is independent of f. The p-norm is defined by n n n(cid:16)X (cid:17)1/p X o |||f|||=inf kf kp : f = f , j j j=1 j=1 where the infimum is taken over all finite sequences {f }⊂X. j Proof of Lemma. Take p so that (2K)p = 2, where K is the constant from (1.1), and define the functional H on X in the following way: H(0) = 0 and H(f)p =2k if 2k−1 6kfkp <2k for some integer k. Since kfkp 6H(f)p 62kfkp, (1.5) inequality (1.4) is a consequence of the inequality kf +···+f kp 62(cid:0)H(f )p+···+H(f )p (cid:1). 1 n 1 n The latter holds for n=1. If n>2, we consider two cases. (i) Let the summands H(f ) be mutually distinct and arranged in decreasing j order. Then we have H(f )p 621−jH(f )p (16j 6n). (1.6) j 1 From (1.1) it follows that kf +gk62Kmax{kfk, kgk}, whence, by (1.5), kf +···+f k6max{(2K)jH(f ) : 16j 6n}. 1 n j Because of (1.6) and the choice of p, it turns out that kf +···+f kp 62H(f )p, 1 n 1 which implies the required inequality. (ii) Assume that the sequence H(f ) contains at least two equal elements; for j example, let H(f )=H(f )=2m. Then 2m−1 6kfkp, kfkp <2m. Since 1 2 1 2 kf +f kp 6(2K)pmax{kf kp, kf kp}=2max{kf kp, kf kp}62m+1, 1 2 1 2 1 2 1.1 Quasinorm and p-norm 9 wehaveH(f +f )p 62m+1 =H(f )p+H(f )p. Thisandtheinductionhypothesis 1 2 1 2 imply k(f +f )+···+f kp 62(cid:0)H(f +f )p+···+H(f )p (cid:1) 1 2 n 1 2 n 62(cid:0)H(f )p+H(f )p+···+H(f )p (cid:1) 1 2 n 62(cid:0)kf kp+kf kp+···+kf kp (cid:1). 2 1 2 n The space X is endowed with the structure of a topological vector space by declaring “a neighborhood of zero” to mean “a set containing {f : kfk<1/n} for somen=1,2,....”(∗) Thistopologyismetrizable, accordingtotheAoki/Rolewicz theorem; namely, if a p-norm |||·||| is equivalent to the original quasinorm, then the formula d(f,g)=|||f −g|||p defines a metric that induces the same topology. The space X need not be locally convex(†); it is locally bounded because the neighborhoods {f : kfk < 1/n} are bounded in the sense of theory of topologi- cal vector spaces. On the other hand, it is known that a locally bounded vector topology can be described by a quasinorm (cf. [87]). 1.1.3 Exercise On the space Lp(0,1) (0 < p < 1), there is not an equivalent q-norm for 1>q >p. The same holds for the sequence space ‘p. Quasi-Banach and p-Banach spaces A quasinormed space X is called a quasi- Banachspaceifitiscomplete,whichmeansthatasequence{f }⊂X isconvergent n if (and only if) kf −f k→0 as m,n→∞. If X is p-normed and complete, then m n X is said to be p-Banach. 1.1.4 Proposition LetX bep-normed. ThenX iscompleteiffconvergenceofthe series Pkf kp implies convergence of Pf . If X is complete and Pf converges, n n n then there holds the inequality (cid:13)(cid:13)P∞n=1fn(cid:13)(cid:13)p 6P∞n=1kfnkp. 1.1.5 Proposition Let {f } (j,k > 1) be a double sequence in a p-Banach jk ∞(cid:16) ∞ (cid:17) ∞ (cid:16)∞ (cid:17) space X. If Pkf kp <∞, then the iterated series P P f and P P f jk jk jk j,k j=1 k=1 k=1 j=1 converge and have the same sum. 1.1.6 Exercise (Peck [81]) Let (X,k·k) be a complex p-normed space of dimen- sion n < ∞. By a theorem of Carathe´odory, every point from the convex hull of theunitballcanberepresentedasaconvexcombinationof2npointsfromtheball (because the real dimension is 2n). This can be used to show that there exists a norm k·k on X such that kfk 6 kfk 6 (2n)1/p−1kfk . Note that (2n)1/p−1 is n n n not the best constant, at least for n=1. (∗)The“ball”{f : kfk<1} need not beanopen set. Thereforea quasinorm, in contrast to a p-norm,neednotbecontinuous. (†)Forexample,thespaceLp(0,1),0<p<1,isnotlocallyconvex. 10 1 Quasi-Banach spaces 1.2 Linear operators In the class of quasinormed spaces, continuity and boundedness of linear operators are equivalent. In the space L(X,Y), of continuous linear operators from X to Y, the quasinorm is defined by kTk:=sup kTfk. kfk61 The space L(X,Y) is complete iff so is Y. AnoperatorT ∈L(X,Y)issaidtobeinvertibleifitisbijectiveanditsinverse is continuous. 1.2.1 Proposition Let X be a quasi-Banach space and T ∈ L(X,X) such an operator that kI −Tk < 1, where I is the identity operator. Then T is invertible and there holds the inequality kT−1kp 6 C(cid:0)1−kI −Tkp(cid:1)−1, where C and p are the constants from Lemma 1.1.1. Proof. Consider the series P∞ (I −T)k. From inequality (1.4), applied to k=0 the space L(X,X), we get (cid:13) n (cid:13)p n (cid:13)(cid:13) X(I−T)k(cid:13)(cid:13) 6C X kI−Tkpk. (cid:13) (cid:13) k=m k=m Therefore the series converges; denote its sum by S. Then we have ST = TS = I and kSkp 6CP∞ kI−Tkpk, which was to be proved. 2 k=0 The following statement is important although its proof is very simple. 1.2.2 Theorem LetX andY bequasi-BanachspacesandE adensesubsetofX. LetT ∈L(X,Y)beasequencesuchthatsup kT k<∞. Ifthelimitlim T f n n n n→∞ n existsforallf ∈E,thenitexistsforallf ∈X andtheoperatorTf :=lim T f n→∞ n is linear and continuous. 1.2.3 Exercise LetT beacontinuouslinearoperatorfromaquasi-normedspace X to quasi-normed space Y, and let E be a subset of X such that the linear hull of E is dense in X. If Y is a closed subspace of Y such that T(E) ⊂ Y , then 0 0 T(X)⊂Y . 0 q-Banach envelope Inthegeneralcase, aquasi-Banachspaceisembeddedintomanyq-Banachspaces; the “smallest” of them is called the q-Banach envelope of X. To be more precise, define the functional N (0<q 61) on X in the following way: q (cid:26)(cid:18) (cid:19)1/q (cid:27) X X N (f)=inf kf kq : f =f , (1.7) q j j j j where the infimum is taken over the set of finite sequences {f } ⊂ X. This func- j tional is a “ q-seminorm”, i.e., satisfies the conditions {N (f +g)}q 6{N (f)}q+{N (g)}q, N (λf)=|λ|N (f). q q q q q

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.