ebook img

Introduction to Fluid-Structure Interactions PDF

238 Pages·2022·5.642 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Fluid-Structure Interactions

Yahya Modarres-Sadeghi Introduction to Fluid-Structure Interactions Introduction to Fluid-Structure Interactions Yahya Modarres-Sadeghi Introduction to Fluid-Structure Interactions YahyaModarres-Sadeghi DepartmentofMechanicalandIndustrialEngineering UniversityofMassachusetts Amherst,MA,USA ISBN978-3-030-85882-7 ISBN978-3-030-85884-1 (eBook) https://doi.org/10.1007/978-3-030-85884-1 ©SpringerNatureSwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Acknowledgments IwouldliketoexpressmyprofoundgratitudetoMichaelP.Païdoussis,Michael.S. Triantafyllou, and Emmanuel de Langre for forming the foundation of my under- standing of fluid-structure interactions (FSI). In the process of writing this book, I benefitedfromdiscussionswithseveralofmycolleaguesandfriends.Iamgrateful to Rémi Bourguet, for our inspiring discussions on different aspects of FSI in the pastseveralyearsandforhisfocusedfeedbacksonthisbook.Ihavehadproductive conversationswithJasonDahlandLucaCaracogliaonmanytopicsrelatedtoFSI. My former and current graduate students, Shruti Ladge, Anil Jain, Lakshmi- Narayanan Ramanujam, Banafsheh Seyed-Aghazadeh, Pariya Pourazarm. Gary Chang, Daniel Carlson, Todd Currier, Tyler Gurian, Suyue Han, Bridget Benner, PieterBoersma,UmangPatel,AdrianCarleton,andDanielaCaraeni,contributedto differentaspectsofthisbook,fromproducingsomeoftheresultstogoingthrough the initial versions of the text, to giving feedback on the contents. Erica DeWitt’s meticulous work on re-drawing and improving the figures throughout the book is much appreciated. This book is the result of teaching a course on fluid-structure interactionsattheUniversityofMassachusettsAmherstinthepastseveralyears,and the students who participated in the course over the years motivated me with their feedbacks and their enthusiasm. I am grateful to my editor, Michael Luby, and his team at Springer for their careful handling of this book from its first draft to its presentform. v Contents 1 Introduction. . . . . .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . 1 2 FlowAroundaFixedCylinder. . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 SeparationandVortexShedding. . . . . . . . . . . . . . . . . . . . . . 6 3 VortexSheddingversusReynoldsNumber. . . . . . . . . . . . . . 7 4 StrouhalNumber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 FlowForcesonaFixedCylinder. . . . . . . . . . . . . . . . . . . . . . 12 5.1 TheMeanFlowForcesActingonaCylinder. . . . . . . . . 13 5.2 TheFluctuatingDragandLiftForces. . . . . . . . . . . . . . 18 6 DragCrisis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 VibrationsofOneandTwoDegree-of-FreedomSystems. . . . . . 23 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 AnUndampedSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 ADampedSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 MeasuringtheStructuralDamping. . . . . . . . . . . . . . . . . . . . 32 5 HarmonicExcitationofDampedSystems. . . . . . . . . . . . . . . 33 6 SystemswithTwoDegreesofFreedom. . . . . . . . . . . . . . . . . 39 7 OscillationsofaStructureinOtherwiseStillFluid. . . . . . . . . 44 4 Vortex-InducedVibrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2 Vortex-InducedVibrationsofaOne-Degree-of-Freedom System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3 TheEquationofMotionandtheMajorDimensionless Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 AmplitudeandFrequencyResponses. . . . . . . . . . . . . . . . . . . 56 5 TheInfluenceofMassandDampingontheVIV Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6 SheddingPatternsatDifferentReducedVelocities. . . . . . . . . . 59 vii viii Contents 7 TheAddedMassandtheFlow-InducedDamping. . . . . . . . . . 60 8 ForcedOscillationsofaCylinderinFlow. . . . . . . . . . . . . . . . 64 9 ModelingVIV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 10 VIVintheInlineDirection. . . . . . . . . . . . . . . . . . . . . . . . . . 75 11 Two-Degree-of-FreedomVIV. . . . . . . . . . . . . . . . . . . . . . . . 77 12 BluffBodieswithNoncircularCrossSections. . . . . . . . . . . . 83 5 GallopingandFlutter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2 TheMeanFlowForcesActingona1DOFBluffBody withaCircularCrossSection. . . . . . . . . . . . . . . . . . . . . . . . 86 3 1DOFOscillationsofaBluffBodywithaNoncircular CrossSection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.1 TheEquationofMotionfor1DOFGalloping. . . . . . . . 88 3.2 DimensionlessEquationofMotionfor1DOF Galloping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.3 TheCriterionforStability. . . . . . . . . . . . . . . . . . . . . . . 92 3.4 TheOnsetofInstability. . . . . . . . . . . . . . . . . . . . . . . . 93 3.5 TheFlowForcesinTermsofCLandCD. . . . . . . . . . . . 94 3.6 LinearStabilityAnalysis. . .. . . .. . . .. . . .. . . .. . . .. 96 3.7 TheEigenvaluePlotsandtheArgandDiagram. . . . . . . 97 3.8 LinearStabilityAnalysisforGalloping. . . . . . . . . . . . . 99 3.9 OntheQuasi-SteadyAssumptionandtheDifferences BetweenVIVandGalloping. . . . . . . . . . . . . . . . . . . . . 101 4 AStreamlinedStructureinFlow. . . . . . . . . . . . . . . . . . . . . . 102 4.1 TheEquationsofMotionfora2DOFAirfoilinFlow. . 103 4.2 SolvingtheEquationsofMotionandthePossible InstabilitiesoftheSystem. . . . . . . . . . . . . . . . . . . . . . . 106 5 NonlinearGalloping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.1 TheSystem’sResponsefortheThird-Order Model—SupercriticalInstability. . . . . . . . . . . . . . . . . . 111 5.2 ASeventh-OrderModelandSubcriticalInstability. . . . . 115 6 VibrationsofContinuousStructures. . . . . . . . . . . . . . . . . . . . . 119 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 2 LinearEquationofMotionforaBeamunderExternal Tension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3 TheNaturalFrequenciesandModeShapesofaBeam. . . . . . 124 4 Example:DerivingtheNaturalFrequenciesandMode ShapesofaCantileveredBeam. . . . . . . . . . . . . . . . . . . . . . . 127 5 NotesonModeShapesandtheFinalForm oftheBeam’sSolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6 TravelingWavesandtheDispersionRelation. . . .. . . . . . .. . 136 7 TheGalerkinMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Contents ix 7 AFlexiblePipeConveyingFluid. . . . . . . . . . . . . . . . . . . . . . . . 147 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 2 DerivationofaLinearEquationforaPipeConveying Fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3 DimensionlessEquationandDimensionlessParameters. . . . . . 155 4 TheMethodofSolutionfortheLinearPipeEquation. . . . . . . . 158 5 LinearBehaviorofaPipewithSupportedEnds. . . . . . . . . . . . 161 6 LinearBehaviorofaCantileveredPipe. . . . . . . . . . . . . . . . . . 165 7 HolmesNonlinearEquationforaPipewithSupported Ends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 8 SolvingtheHolmesEquation. . . . . . . . . . . . . . . . . . . . . . . . . 170 9 ThePost-criticalBehaviorofaPipeSupportedatBoth Ends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10 ANonlinearCantileveredPipe. . . . . . . . . . . . . . . . . . . . . . . 175 11 TypicalNonlinearBehaviorofaCantileveredPipe. . . . . . . . . 178 12 ACantileveredPipewithanEndMass. . . . . . . . . . . . . . . . . 181 13 Three-DimensionalBehaviorofaPipewithanEnd MassandObservationofChaos. . . . . . . . . . . . . . . . . . . . . . 184 8 AFlexibleCylinderinAxialFlow. . . . . . . . . . . . . . . . . . . . . . . 189 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2 DerivationoftheEquationofMotion. . . . . . . . . . . . . . . . . . 190 3 DimensionlessEquationofMotion. . . . . . . . . . . . . . . . . . . . 196 4 MethodofSolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5 LinearBehaviorofaCylinderSupportedatBothEnds. . . . . . 199 6 ACantileveredCylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7 LinearResultsforaCantileveredCylinder. . . . . . . . . . . . . . . 205 8 NonlinearBehaviorofaCantileveredCylinder. . . . . . . . . . . . 206 9 Vortex-InducedVibrationsofFlexibleBeams. . . . . . . . . . . . . . 211 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2 ABeamPlacedinOtherwiseStillFluid. . . . . . . . . . . . . . . . . 212 3 ABeamwithaCircularCrossSectionPlacedinFlow. . . . . . 215 3.1 GeneralConsiderations. . . . . . . . . . . . . . . . . . . . . . . . . 215 3.2 TheFormofEquationsofMotion. . . . . . . . . . . . . . . . . 217 3.3 ATypicalResponse. . . . . . . . . . . . . . . . . . . . . . . . . . . 218 3.4 TheWake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 3.5 Single-ModeExcitation. . . . . . . . . . . . . . . . . . . . . . . . 222 3.6 Multi-ModalExcitation. . . . . . . . . . . . . . . . . . . . . . . . 224 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Chapter 1 Introduction Fluid-structureinteraction(FSI)occurswhenaflexibleorflexiblymountedstructure (arigidstructurethat issupportedbysprings)isincontactwithflow,andtheflow forcesresultinthemovementofthestructure.Thenthemovement ofthestructure causes the flow forces to change. This change in flow forces, in turn, results in changesinthestructure’sdisplacement(Fig.1.1).Insuchsystems,wecannotfocus onlyonthestructureandignoretheflowaroundit,orfocusontheflowandignore thestructureincontactwithit.Thetwoofthemmustbeconsideredtogether. When we study fluid mechanics, we assume that the boundaries of the fluid in contact with a structure are fixed, and we focus on what the fluid does. When we study dynamics or vibrations, we assume flow forces are negligible: A structure oscillates or moves in vacuum. In both cases, if we can no longer make these assumptions, then we have an FSI system. For example, when on a windy day a treebendsanditsleavesoscillate,orwhenaflagflaps,orawindchimemakesmusic, wecannotassumethattheboundariesoftheflowfieldarerigid,orwecannotassume that there is no flow around the structure. The garden hose problem is another example of an FSI system: leave a garden hose unattended when the valve is wide open: the hose starts moving around. A hose made of steel would not have moved, neither a rubber hose with no water. When we snore, our soft palate oscillatesbecauseoftheflowofairaroundit.Wewouldnothavesnoredifwedid notbreathe,orifwedidnothaveasoftpalate. FSI is a growing field of research. Traditional observations of FSI phenomena havebeeninaerospace(flutterofanairplanewing),civilengineering(wind-induced oscillationsoftallbuildingsandbridges–suchastheverywell-knownexampleof the Tacoma Narrows Bridge’s collapse), and ocean engineering (oscillations of offshore platforms due to waves).An offshore floating wind turbine isan example ofseveraltypesofFSIsystems:thewavesinteractwiththeplatformandtheplatform moves. The currents are in contact with the mooring lines—the long cables that attachtheplatformtotheseabed—andmakethemoscillate.Thewindturbinetower interactswiththewind.Ifthebladesarelong,whichisnormallythecaseinafloating wind turbine blade, they bend as they rotate, and they oscillate due to the wind, ©SpringerNatureSwitzerlandAG2021 1 Y.Modarres-Sadeghi,IntroductiontoFluid-StructureInteractions, https://doi.org/10.1007/978-3-030-85884-1_1 2 1 Introduction Fig.1.1 Afluid-structure interactionsystem Fig.1.2 (a)Flowaroundafixedcylindercombinedwith(b)amass-spring-damperconstitutesa (c)fundamentalFSIproblem becausetheyarelarge,andthereforeflexible.Severalbiomedicalandbiomechanics problemsincludeFSIsystems.Arteriesareflexiblestructuresthatareconstantlyin contact with blood flow. A heart valve and a cerebral aneurysm are also flexible structures in contact with blood. We can find several other FSI examples around us.MoreresearchersfromdifferentfieldsarebecominginterestedinFSIphenomena astheyfindmoreandmoreFSIexamplesintheirwork. Influidmechanics,atypicalproblemistheflowbehavioraroundarigidcylinder (Fig.1.2a).Whatisthepressuredistributionaroundthecylinder?Atwhatanglewill the flow separate from the cylinder? What is the thickness of the boundary layer? Questions of this type are answered in studying this problem. In dynamics and vibrations,amass(withanycrosssection)supportedbyaspringandadamperisa fundamentalproblem(Fig.1.2b).Whatisthenaturalfrequencyofthesystem?How does it respond to an external force? For how long does it oscillate after an initial disturbance?Questionsofthistypearetypicalquestionsthatareansweredwhenwe study this problem in a dynamics or vibrations context. The combination of these twoproblemscreatesafundamentalprobleminFSI:Whatwillhappenifweplacea cylindersupportedby aspringand adamper inthe flow ofsome fluid (Fig. 1.2c)? Howwillthepressuredistributionaroundthecylinderandasaresulttheflowforces acting on it change if the cylinder moves? Under which conditions will the cylinder move? How will its oscillations change compared with the case where it oscillatesinvacuum?ThisexampleisthefirstFSIexamplethatwewillstudyinthis book. This book will start with a review of the fundamentals in fluid mechanics (Chap. 2) and dynamics and vibrations (Chap. 3) that we will need to relate to the conceptsthatwewilldiscussinthelaterchapters.ThenwewillstartfocusingonFSI systems from Chap. 4, where we will consider the case of a flexibly mounted

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.