ebook img

Introduction to finite element vibration analysis PDF

518 Pages·2010·3.829 MB·English
by  M Petyt
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to finite element vibration analysis

This page intentionally left blank INTRODUCTION TO FINITE ELEMENT VIBRATION ANALYSIS, SECOND EDITION There are many books on finite element methods but few give more thanabriefdescriptionoftheirapplicationtostructuralvibrationanal- ysis. This book presents an introduction to the mathematical basis of finite element analysis as applied to vibrating systems. Finite ele- ment analysis is a technique that is very important in modelling the responseofstructurestodynamicloads.Althoughthisbookassumes nopreviousknowledgeoffiniteelementmethods,thosewhodohave knowledge will still find the book to be useful. It can be utilised by aeronautical, civil, mechanical and structural engineers as well as navalarchitects.Thissecondeditionincludesinformationonthemany developments that have taken place over the last 20 years. Existing chapters have been expanded,where necessary, and three new chap- tershavebeenincludedthatdiscussthevibrationofshellsandmulti- layeredelementsandprovideanintroductiontothehierarchicalfinite elementmethod. MauricePetytisanEmeritusProfessorofStructuralDynamics,Insti- tute of Sound and Vibration Research, University of Southampton. He has also held appointments as a Research Professor at George WashingtonUniversityandVisitingProfessorattheUniversityd’Aix- MarseilleII,France,andtheNationalUniversityofSingapore.Heisa ChartedMathematician,aFellowoftheInstituteofMathematicsand Its Applications, a Fellow of the International Institute of Acoustics and Vibration, and a Fellow of the Institute of Acoustics. Formerly European Editor and Editor-in-Chief, he is now Editor Emeritus of theJournalofSoundandVibration. Introduction to Finite Element Vibration Analysis Second Edition Maurice Petyt UniversityofSouthampton cambridgeuniversitypress Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, Sa˜oPaulo,Delhi,Dubai,Tokyo,MexicoCity CambridgeUniversityPress 32AvenueoftheAmericas,NewYork,NY10013-2473,USA www.cambridge.org Informationonthistitle:www.cambridge.org/9780521191609 (cid:2)C MauricePetyt1990,2010 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firsteditionpublished1990 Secondeditionpublished2010 PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationdata Petyt,M. Introductiontofiniteelementvibrationanalysis/MauricePetyt.–2nded. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-521-19160-9 1.Vibration. 2.Finiteelementmethod. I.Title. TA356.P47 2010 624.1(cid:3)76–dc22 2010029494 ISBN978-0-521-19160-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. Contents Preface pagexi Notation xv 1 FormulationoftheEquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 DynamicEquilibrium 1 1.2 PrincipleofVirtualDisplacements 3 1.3 Hamilton’sPrinciple 4 1.4 Lagrange’sEquations 8 1.5 EquationsofMotionforaSystemwithConstraints 12 Problems 15 2 ElementEnergyFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 AxialElement 20 2.2 TorqueElement 21 2.3 BeamBendingElement 23 2.4 DeepBeamBendingElement 25 2.5 MembraneElement 26 2.6 ThinPlateBendingElement 28 2.7 ThickPlateBendingElement 30 2.8 Three-DimensionalSolid 31 2.9 AxisymmetricSolid 33 2.10TheDissipationFunction 35 2.11EquationsofMotionandBoundaryConditions 36 Problems 40 3 IntroductiontotheFiniteElementDisplacementMethod . . . . . . . . . .45 3.1 Rayleigh–RitzMethod 45 3.2 FiniteElementDisplacementMethod 53 3.3 AxialVibrationofRods 56 3.4 TorsionalVibrationofShafts 70 3.5 BendingVibrationofBeams 72 3.6 VibrationofPlaneFrameworks 77 v vi Contents 3.7 VibrationofThree-DimensionalFrameworks 84 3.8 TechniquesforIncreasingtheAccuracyofElements 92 3.9 ShearDeformationandRotaryInertiaEffects 95 3.10NumericalIntegration 101 3.11OtherConsiderationsforBeams 112 Problems 115 4 In-planeVibrationofPlates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.1 LinearTriangularElement 120 4.2 LinearRectangularElement 127 4.3 LinearQuadrilateralElement 132 4.4 AreaCoordinatesforTriangles 137 4.5 LinearTriangleinAreaCoordinates 138 4.6 IncreasingtheAccuracyofElements 139 Problems 144 5 VibrationofSolids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1 AxisymmetricSolids 148 5.2 AppliedLoading 149 5.3 Displacements 152 5.4 ReducedEnergyExpressions 152 5.5 LinearTriangularElement 153 5.6 CoreElements 160 5.7 ArbitraryShapedSolids 163 5.8 RectangularHexahedron 165 5.9 IsoparametricHexahedron 170 5.10RightPentahedron 174 5.11VolumeCoordinatesforTetrahedra 178 5.12TetrahedronElement 180 5.13IncreasingtheAccuracyofElements 182 Problems 190 6 FlexuralVibrationofPlates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.1 ThinRectangularElement(non-conforming) 193 6.2 ThinRectangularElement(conforming) 204 6.3 ThickRectangularElement 209 6.4 ThinTriangularElement(non-conforming) 215 6.5 ThinTriangularElement(conforming) 222 6.5.1 CartesianCoordinates 222 6.5.2 AreaCoordinates 228 6.6 ThickTriangularElement 234 6.7 OtherPlateBendingElements 237 Problems 245 7 VibrationofStiffenedPlatesandFoldedPlateStructures . . . . . . . . . 248 7.1 StiffenedPlatesI 248 Contents vii 7.2 StiffenedPlatesII 252 7.3 FoldedPlatesI 257 7.4 FoldedPlatesII 259 7.5 FoldedPlatesIII 262 Problems 265 8 VibrationofShells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 8.1 ThinShellElements 266 8.2 ThickShellElements 268 8.2.1 MiddleSurfaceShellElement 269 8.3 ThickAxisymmetricShellElements 277 8.3.1 MiddleSurfaceAxisymmetricShellElement 277 Problems 283 9 VibrationofLaminatedPlatesandShells . . . . . . . . . . . . . . . . . . . . .284 9.1 LaminatedPlateElements 285 9.1.1 ClassicalLaminatedPlateTheory 285 9.1.2 First-OrderShearDeformationPlateTheory 288 9.1.3 Third-OrderShearDeformationPlateTheory 290 9.2 LaminatedShellElements 295 9.3 SandwichPlateandShellElements 295 10 HierarchicalFiniteElementMethod . . . . . . . . . . . . . . . . . . . . . . . . 297 10.1PolynomialFunctions 297 10.1.1AxialVibrationofRods 298 10.1.2BendingVibrationofBeams 300 10.1.3FlexuralVibrationofPlates 303 10.1.4VibrationofShells 306 10.2TrigonometricFunctions 307 10.2.1AxialVibrationofRods 307 10.2.2BendingVibrationofBeams 309 10.2.3In-planeVibrationofPlates 310 10.2.4FlexuralVibrationofPlates 311 10.2.5VibrationofShells 314 11 AnalysisofFreeVibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 11.1SomePreliminaries 316 11.1.1OrthogonalityofEigenvectors 322 11.1.2TransformationtoStandardForm 322 11.2SturmSequences 326 11.3OrthogonalTransformationofaMatrix 334 11.4EigenproblemSolutionMethods 334 11.5ReducingtheNumberofDegreesofFreedom 336 11.5.1MakingUseofSymmetry 336 11.5.2RotationallyPeriodicStructures 338 viii Contents 11.5.3EliminationofUnwantedDegreesofFreedom 343 11.5.4ComponentModeSynthesis 349 11.5.4.1 FixedInterfaceMethod 349 11.5.4.2 FreeInterfaceMethod 352 Problems 355 12 ForcedResponseI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 12.1ModalAnalysis 357 12.2RepresentationofDamping 358 12.2.1StructuralDamping 358 12.2.2ViscousDamping 359 12.3HarmonicResponse 361 12.3.1ModalAnalysis 361 12.3.2DirectAnalysis 370 12.4ResponsetoPeriodicExcitation 377 12.5TransientResponse 381 12.5.1ModalAnalysis 381 12.5.1.1 CentralDifferenceMethod 384 12.5.1.2 TheHouboltMethod 389 12.5.1.3 TheNewmarkMethod 394 12.5.1.4 TheWilsonθ Method 400 12.5.2DirectAnalysis 402 12.5.2.1 CentralDifferenceMethod 403 12.5.2.2 TheHouboltMethod 408 12.5.2.3 TheNewmarkMethod 409 12.5.2.4 TheWilsonθ Method 409 12.5.3SelectingaTimeStep 410 12.5.4AdditionalMethods 411 Problems 411 13 ForcedResponseII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 13.1ResponsetoRandomExcitation 413 13.1.1RepresentationoftheExcitation 413 13.1.2ResponseofaSingleDegreeofFreedomSystem 423 13.1.3DirectResponseofaMulti-DegreeofFreedomSystem 426 13.1.4ModalResponseofaMulti-DegreeofFreedomSystem 430 13.2TruncationoftheModalSolution 431 13.2.1ModeAccelerationMethod 435 13.2.2ResidualFlexibility 437 13.3RitzVectorAnalysis 438 13.4ResponsetoImposedDisplacements 440 13.4.1DirectResponse 440 13.4.2ModalResponse 442 13.5ReducingtheNumberofDegreesofFreedom 443 13.5.1MakingUseofSymmetry 443 13.5.2RotationallyPeriodicStructures 444

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.