ebook img

Introduction to differential calculus : systematic studies with engineering applications for beginners PDF

757 Pages·2012·3.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to differential calculus : systematic studies with engineering applications for beginners

INTRODUCTION TO DIFFERENTIAL CALCULUS INTRODUCTION TO DIFFERENTIAL CALCULUS Systematic Studies with Engineering Applications for Beginners Ulrich L. Rohde Prof. Dr.-Ing.Dr. h.c. mult. BTU Cottbus, Germany Synergy MicrowaveCorporation Paterson, NJ, USA G. C. Jain (Retd. Scientist) Defense Research andDevelopmentOrganization Maharashtra,India Ajay K. Poddar Chief Scientist,Synergy MicrowaveCorporation, Paterson, NJ, USA A. K. Ghosh Professor, Department ofAerospace Engineering Indian Institute ofTechnology – Kanpur Kanpur, India Copyright(cid:2)2012byJohnWiley&Sons.Allrightsreserved PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbestefforts inpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublisher norauthorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnot limitedtospecial,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStates at(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsite atwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Introductiontodifferentialcalculus:systematicstudieswithengineering applicationsforbeginners/UlrichL.Rohde...[etal.].– 1sted. p.cm. Includesbibliographicalreferencesandindex. ISBN978-1-118-11775-0(hardback) 1. Differentialcalculus–Textbooks.I. Rohde,UlrichL. QA304.I592012 513’.33–dc23 2011018421 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 CONTENTS Foreword xiii Preface xvii Biographies xxv Introduction xxvii Acknowledgments xxix 1 FromArithmetictoAlgebra (WhatmustyouknowtolearnCalculus?) 1 1.1 Introduction 1 1.2 TheSetofWholeNumbers 1 1.3 TheSetofIntegers 1 1.4 TheSetofRationalNumbers 1 1.5 TheSetofIrrationalNumbers 2 1.6 TheSetofRealNumbers 2 1.7 EvenandOddNumbers 3 1.8 Factors 3 1.9 PrimeandCompositeNumbers 3 1.10 CoprimeNumbers 4 1.11 HighestCommonFactor(H.C.F.) 4 1.12 LeastCommonMultiple(L.C.M.) 4 1.13 TheLanguageofAlgebra 5 1.14 AlgebraasaLanguageforThinking 7 1.15 Induction 9 1.16 AnImportantResult:TheNumberofPrimesisInfinite 10 1.17 AlgebraastheShorthandofMathematics 10 1.18 NotationsinAlgebra 11 1.19 ExpressionsandIdentitiesinAlgebra 12 1.20 OperationsInvolvingNegativeNumbers 15 1.21 DivisionbyZero 16 2 TheConceptofaFunction (WhatmustyouknowtolearnCalculus?) 19 2.1 Introduction 19 2.2 EqualityofOrderedPairs 20 2.3 RelationsandFunctions 20 2.4 Definition 21 v vi CONTENTS 2.5 Domain,Codomain,Image,andRangeofaFunction 23 2.6 DistinctionBetween“f”and“f(x)” 23 2.7 DependentandIndependentVariables 24 2.8 FunctionsataGlance 24 2.9 ModesofExpressingaFunction 24 2.10 TypesofFunctions 25 2.11 InverseFunctionf(cid:2)1 29 2.12 ComparingSetswithoutCountingtheirElements 32 2.13 TheCardinalNumberofaSet 32 2.14 EquivalentSets(Definition) 33 2.15 FiniteSet(Definition) 33 2.16 InfiniteSet(Definition) 34 2.17 CountableandUncountableSets 36 2.18 CardinalityofCountableandUncountableSets 36 2.19 SecondDefinitionofanInfinitySet 37 2.20 TheNotionofInfinity 37 2.21 AnImportantNoteAbouttheSizeofInfinity 38 2.22 AlgebraofInfinity(1) 38 3 DiscoveryofRealNumbers:ThroughTraditionalAlgebra (WhatmustyouknowtolearnCalculus?) 41 3.1 Introduction 41 3.2 PrimeandCompositeNumbers 42 3.3 TheSetofRationalNumbers 43 3.4 TheSetofIrrationalNumbers 43 3.5 TheSetofRealNumbers 43 3.6 DefinitionofaRealNumber 44 3.7 GeometricalPictureofRealNumbers 44 3.8 AlgebraicPropertiesofRealNumbers 44 3.9 Inequalities(OrderPropertiesinRealNumbers) 45 3.10 Intervals 46 3.11 PropertiesofAbsoluteValues 51 3.12 NeighborhoodofaPoint 54 3.13 PropertyofDenseness 55 3.14 CompletenessPropertyofRealNumbers 55 3.15 (Modified)DefinitionII(l.u.b.) 60 3.16 (Modified)DefinitionII(g.l.b.) 60 4 FromGeometrytoCoordinateGeometry (WhatmustyouknowtolearnCalculus?) 63 4.1 Introduction 63 4.2 CoordinateGeometry(orAnalyticGeometry) 64 4.3 TheDistanceFormula 69 4.4 SectionFormula 70 4.5 TheAngleofInclinationofaLine 71 4.6 Solution(s)ofanEquationanditsGraph 76 4.7 EquationsofaLine 83 4.8 ParallelLines 89 CONTENTS vii 4.9 RelationBetweentheSlopesof(Nonvertical)Linesthatare PerpendiculartoOneAnother 90 4.10 AngleBetweenTwoLines 92 4.11 PolarCoordinateSystem 93 5 TrigonometryandTrigonometricFunctions (WhatmustyouknowtolearnCalculus?) 97 5.1 Introduction 97 5.2 (Directed)Angles 98 5.3 Rangesofsin(cid:2)andcos(cid:2) 109 5.4 UsefulConceptsandDefinitions 111 5.5 TwoImportantPropertiesofTrigonometricFunctions 114 5.6 GraphsofTrigonometricFunctions 115 5.7 TrigonometricIdentitiesandTrigonometricEquations 115 5.8 RevisionofCertainIdeasinTrigonometry 120 6 MoreAboutFunctions (WhatmustyouknowtolearnCalculus?) 129 6.1 Introduction 129 6.2 FunctionasaMachine 129 6.3 DomainandRange 130 6.4 DependentandIndependentVariables 130 6.5 TwoSpecialFunctions 132 6.6 CombiningFunctions 132 6.7 RaisingaFunctiontoaPower 137 6.8 CompositionofFunctions 137 6.9 EqualityofFunctions 142 6.10 ImportantObservations 142 6.11 EvenandOddFunctions 143 6.12 IncreasingandDecreasingFunctions 144 6.13 ElementaryandNonelementaryFunctions 147 7a TheConceptofLimitofaFunction (WhatmustyouknowtolearnCalculus?) 149 7a.1 Introduction 149 7a.2 UsefulNotations 149 7a.3 TheConceptofLimitofaFunction:InformalDiscussion 151 7a.4 IntuitiveMeaningofLimitofaFunction 153 7a.5 TestingtheDefinition[Applicationsofthe«, dDefinitionofLimit] 163 7a.6 Theorem(B):SubstitutionTheorem 174 7a.7 Theorem(C):SqueezeTheoremorSandwichTheorem 175 7a.8 One-SidedLimits(ExtensiontotheConceptofLimit) 175 7b MethodsforComputingLimitsofAlgebraicFunctions (WhatmustyouknowtolearnCalculus?) 177 7b.1 Introduction 177 7b.2 MethodsforEvaluatingLimitsofVariousAlgebraicFunctions 178 viii CONTENTS 7b.3 LimitatInfinity 187 7b.4 InfiniteLimits 190 7b.5 Asymptotes 192 8 TheConceptofContinuityofaFunction,andPointsofDiscontinuity (WhatmustyouknowtolearnCalculus?) 197 8.1 Introduction 197 8.2 DevelopingtheDefinitionofContinuity“AtaPoint” 204 8.3 ClassificationofthePointsofDiscontinuity:TypesofDiscontinuities 214 8.4 CheckingContinuityofFunctionsInvolvingTrigonometric, Exponential,andLogarithmicFunctions 215 8.5 FromOne-SidedLimittoOne-SidedContinuityanditsApplications 224 8.6 ContinuityonanInterval 224 8.7 PropertiesofContinuousFunctions 225 9 TheIdeaofaDerivativeofaFunction 235 9.1 Introduction 235 9.2 DefinitionoftheDerivativeasaRateFunction 239 9.3 InstantaneousRateofChangeofy[¼f(x)]atx¼x andthe 1 SlopeofitsGraphatx¼x 239 1 9.4 ANotationforIncrement(s) 246 9.5 TheProblemofInstantaneousVelocity 246 9.6 DerivativeofSimpleAlgebraicFunctions 259 9.7 DerivativesofTrigonometricFunctions 263 9.8 DerivativesofExponentialandLogarithmicFunctions 264 9.9 DifferentiabilityandContinuity 264 9.10 PhysicalMeaningofDerivative 270 9.11 SomeInterestingObservations 271 9.12 HistoricalNotes 273 10 AlgebraofDerivatives:RulesforComputingDerivativesof VariousCombinationsofDifferentiableFunctions 275 10.1 Introduction 275 10.2 RecallingtheOperatorofDifferentiation 277 10.3 TheDerivativeofaCompositeFunction 290 10.4 UsefulnessofTrigonometricIdentitiesinComputingDerivatives 300 10.5 DerivativesofInverseFunctions 302 11a BasicTrigonometricLimitsandTheirApplications inComputingDerivativesofTrigonometricFunctions 307 11a.1 Introduction 307 11a.2 BasicTrigonometricLimits 308 11a.3 DerivativesofTrigonometricFunctions 314 11b MethodsofComputingLimitsofTrigonometricFunctions 325 11b.1 Introduction 325 11b.2 LimitsoftheType(I) 328 CONTENTS ix 11b.3 LimitsoftheType(II)[lim f(x),wherea6¼0] 332 x!a 11b.4 LimitsofExponentialandLogarithmicFunctions 335 12 ExponentialForm(s)ofaPositiveRealNumberandits Logarithm(s):Pre-RequisiteforUnderstandingExponential andLogarithmicFunctions (WhatmustyouknowtolearnCalculus?) 339 12.1 Introduction 339 12.2 ConceptofLogarithmic 339 12.3 TheLawsofExponent 340 12.4 LawsofExponents(orLawsofIndices) 341 12.5 TwoImportantBases:“10”and“e” 343 12.6 Definition:Logarithm 344 12.7 AdvantagesofCommonLogarithms 346 12.8 ChangeofBase 348 12.9 WhywereLogarithmsInvented? 351 12.10 FindingaCommonLogarithmofa(Positive)Number 351 12.11 Antilogarithm 353 12.12 MethodofCalculationinUsingLogarithm 355 13a ExponentialandLogarithmicFunctionsandTheirDerivatives (WhatmustyouknowtolearnCalculus?) 359 13a.1 Introduction 359 13a.2 Originofe 360 13a.3 DistinctionBetweenExponentialandPowerFunctions 362 13a.4 TheValueofe 362 13a.5 TheExponentialSeries 364 13a.6 PropertiesofeandThoseofRelatedFunctions 365 13a.7 ComparisonofPropertiesofLogarithm(s)totheBases10ande 369 13a.8 ALittleMoreAboute 371 13a.9 GraphsofExponentialFunction(s) 373 13a.10 GeneralLogarithmicFunction 375 13a.11 DerivativesofExponentialandLogarithmicFunctions 378 13a.12 ExponentialRateofGrowth 383 13a.13 HigherExponentialRatesofGrowth 383 13a.14 AnImportantStandardLimit 385 13a.15 ApplicationsoftheFunctionex:ExponentialGrowthandDecay 390 13b MethodsforComputingLimitsofExponentialand LogarithmicFunctions 401 13b.1 Introduction 401 13b.2 ReviewofLogarithms 401 13b.3 SomeBasicLimits 403 13b.4 EvaluationofLimitsBasedontheStandardLimit 410 14 InverseTrigonometricFunctionsandTheirDerivatives 417 14.1 Introduction 417 14.2 TrigonometricFunctions(WithRestrictedDomains)and TheirInverses 420 x CONTENTS 14.3 TheInverseCosineFunction 425 14.4 TheInverseTangentFunction 428 14.5 DefinitionoftheInverseCotangentFunction 431 14.6 FormulafortheDerivativeofInverseSecantFunction 433 14.7 FormulafortheDerivativeofInverseCosecantFunction 436 14.8 ImportantSetsofResultsandtheirApplications 437 14.9 ApplicationofTrigonometricIdentitiesinSimplificationof FunctionsandEvaluationofDerivativesofFunctionsInvolving InverseTrigonometricFunctions 441 15a ImplicitFunctionsandTheirDifferentiation 453 15a.1 Introduction 453 15a.2 CloserLookattheDifficultiesInvolved 455 15a.3 TheMethodofLogarithmicDifferentiation 463 15a.4 ProcedureofLogarithmicDifferentiation 464 15b ParametricFunctionsandTheirDifferentiation 473 15b.1 Introduction 473 15b.2 TheDerivativeofaFunctionRepresentedParametrically 477 15b.3 LineofApproachforComputingtheSpeedofaMovingParticle 480 15b.4 Meaningofdy/dxwithReferencetotheCartesian Formy¼f(x)andParametricFormsx¼f(t),y¼g(t) oftheFunction 481 15b.5 DerivativeofOneFunctionwithRespecttotheOther 483 16 Differentials“dy”and“dx”:MeaningsandApplications 487 16.1 Introduction 487 16.2 ApplyingDifferentialstoApproximateCalculations 492 16.3 DifferentialsofBasicElementaryFunctions 494 16.4 TwoInterpretationsoftheNotationdy/dx 498 16.5 IntegralsinDifferentialNotation 499 16.6 ToCompute(Approximate)SmallChangesand SmallErrorsCausedinVariousSituations 503 17 DerivativesandDifferentialsofHigherOrder 511 17.1 Introduction 511 17.2 DerivativesofHigherOrders:ImplicitFunctions 516 17.3 DerivativesofHigherOrders:ParametricFunctions 516 17.4 DerivativesofHigherOrders:ProductofTwoFunctions (LeibnizFormula) 517 17.5 DifferentialsofHigherOrders 521 17.6 RateofChangeofaFunctionandRelatedRates 523 18 ApplicationsofDerivativesinStudyingMotioninaStraightLine 535 18.1 Introduction 535 18.2 MotioninaStraightLine 535

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.