ebook img

Introduction to Cutting and Packing Optimization. Problems, Modeling Approaches, Solution Methods PDF

426 Pages·2018·8.45 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Cutting and Packing Optimization. Problems, Modeling Approaches, Solution Methods

Guntram Scheithauer Introduction to Cutting and Packing Optimization Problems, Modeling Approaches, Solution Methods 123 GuntramScheithauer InstituteforNumericalMathematics TUDresden Dresden,Germany ISSN0884-8289 ISSN2214-7934 (electronic) InternationalSeriesinOperationsResearch&ManagementScience ISBN978-3-319-64402-8 ISBN978-3-319-64403-5 (eBook) DOI10.1007/978-3-319-64403-5 LibraryofCongressControlNumber:2017951441 ©SpringerInternationalPublishingAG2018 ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The terms allocation, packing, and cutting problem comprise a wide variety of theoretical and practical problems. Although various formulations with different denotations appear frequently, there exist strong relations between them so that solutionmethodsforcuttingproblemscanalsobeappliedforallocationandpacking problems,andviceversa. For example, on the one hand, any (two-dimensional) jigsaw puzzle can be consideredaspackingorallocationproblem:Isitpossibletopackallgivenpuzzle pieces into a predefinedregion? And,if yes, find a correspondingpattern. On the otherhand,therelatedcuttingproblemcouldbe:Howtodissect(cut)apredefined regionsothatasetofdesiredpiecesisobtained? Inthisbook,weinparticulardealwithallocation,packing,andcuttingproblems inwhichan optimizationcomponentisofimportance.Ingeneral,we differentiate betweentwo kindsof problemstatementswhichare formulatedhere asallocation problems: • Computationofanoptimal(allocation)pattern Inthisfirstproblemtype,aregion(container)andasetofsmallerobjects(pieces, items)aregiven,andaprofitcoefficientisassignedtoeachobject.Thenthetask istofindasubsetoftheobjectswithmaximaltotalprofitsuchthatallitemsof itcanbeplacedsimultaneouslywithintheregionwhilemeetingsomeallocation constraints. • Computationofanoptimalcombinationof(allocation)patterns In this case, a sufficiently large number of containers, each having a cost coefficient,andasetofsmallerobjectsaregiven.Findasubsetofthecontainers with minimal total costs such that all objects can be assigned to the chosen containersregardingrelatedallocationconstraints. Problemsofthefirsttypeaim,ingeneral,tomaximizematerialutilizationwhereas thoseofthesecondtypehavetheminimizationofmaterialusageasobjective. Within the last decades, a very large number of investigations have been pre- sented concerningmostdiversified applicationsand correspondingresearch work. Infact,itisimpossibletoencompassthewidevarietyofproblemstatementswhich can be formulated as allocation, packing, or cutting problem. Therefore, attempts toclassifyallthesetopicsareusefultoobtainabetteroverviewonrelatedproblem formulationsandrelationshipsbetweenthem.Importantcontributionsinthisrespect are donein Dyckhoff[H. Dyckhoff,A typologyof cuttingandpackingproblems. Eur. J. Oper. Res. 44(2), 145–159 (1990)],Dyckhoff and Finke [H. Dyckhoff, U. Finke, Cutting and Packing in Production and Distribution (Physica, Heidelberg, 1992)],andWäscherandH.Haußner[G.Wäscher,H.Haußner,H.Schumann,An improvedtypologyofcuttingandpackingproblems.Eur.J.Oper.Res.183,1109– 1130(2007)]. However, the concern of this book consists in giving an introduction to the treatment of cutting and packing problems. Therefore, we will consider several one-, two-, and three-dimensional basic problems, some of their formulations, relatedmodelingissues,andsolutionapproaches.Inparticular,wewilladdressthe followingoptimizationproblemsarisinginthefieldofcuttingandpacking: • knapsackproblems, • cuttingstockandbinpackingproblems, • feasibilityproblems, • optimalguillotinepatternsofrectangularpieces, • non-guillotinepatternsofrectangularpieces, • packingofrectanglesintoastrip, • considerationofqualityconstraints, • palletandmulti-palletloadingproblems, • containerandmulti-containerloadingproblems, • allocationofpolygonalobjects, • circleandspherepacking. As formulation variant of a considered problem we will optionally choose a description of it as an allocation, packing, or cutting problem. A translation into anotherformulationisobvious,ingeneral.Frequently,thepresentationofmodeling issues and solution approachesis supplemented by some examples and exercises. Correspondingsolutionsareprovided,too. This bookis addressedto everyonewho is dealingwith allocation,packing,or cutting of regular or irregular objects, and to those who intend to deal with such problems. In particular, this monograph is directed at students of mathematics, optimization,businessortechnomathematics,operationsresearch,andengineering. Moreover,our aim is to provide fundamentalknowledge to researchers and prac- titioners which have to solve real-world allocation, packing, or cutting problems. Based on the presentedmodelingmethodsand the proposedsolution strategiesas wellasnumerousreferencestorelatedproblems,themanuscriptshouldenablethe reader to successfully tackle further new and more complex cutting and packing problems. This book is a result of a long-time work on the field of cutting and packing, andof severallectureson this topic.Itconstitutesa majorextensionofthe earlier German version [G. Scheithauer, Zuschnitt- und Packungsoptimierung (Vieweg + Teubner, Wiesbaden, 2008)]. The ingredients of the book are based on many theoreticallyorientedinvestigationsandexperienceacquiredinnumerouspractical projects. I am deeply grateful to Johannes Terno who introduced me to the fields of optimization and cutting and packing. My sincere thanks go to many researchers and practitionerswho were and/orare workingtogether with me on a pluralityof very interesting topics within that area. In particular, I would like to thank again JürgenRietz for his help to finish the German predecessor of this manuscript, for whichJohnMartinovicgaveveryvaluablesupport.Notleast,Ithankmydearwife Monikaforherunderstandingandactivehelp. Dresden,Germany GuntramScheithauer May2017 Contents 1 Modeling..................................................................... 1 1.1 Set-TheoreticalModels .............................................. 1 1.2 RepresentationofObjects............................................ 5 1.3 RepresentationofPatterns........................................... 7 1.4 ApproximationandInternalDescriptionofObjects................ 8 1.5 ANonlinearOptimizationModel,ˆ-Functions.................... 9 1.6 IntegerLinearProgrammingModels................................ 12 1.7 FurtherOpportunitiesofModeling.................................. 14 1.8 Exercises.............................................................. 14 1.9 Solutions.............................................................. 15 References.................................................................... 17 2 KnapsackProblems ........................................................ 19 2.1 ProblemStatement................................................... 19 2.2 AlgorithmofGilmoreandGomory ................................. 20 2.3 LongestPathMethod................................................. 23 2.4 Branch-and-BoundAlgorithms...................................... 25 2.5 PeriodicityandDominanceofSolutions............................ 29 2.6 KnapsackProblemswithUpperBounds............................ 32 2.7 SetsofPotentialAllocationPoints .................................. 34 2.8 Exercises.............................................................. 38 2.9 Solutions.............................................................. 40 References.................................................................... 45 3 One-DimensionalBinPacking ............................................ 47 3.1 ProblemStatementandModeling................................... 47 3.2 LowerBounds........................................................ 49 3.2.1 NaturalBounds............................................. 49 3.2.2 CombinatorialBounds ..................................... 52 3.2.3 DualFeasibleFunctions.................................... 54 3.2.4 LP-BasedLowerBound.................................... 58 3.3 ReductionMethodsandEquivalenceofInstances.................. 58 3.4 Heuristics............................................................. 60 3.5 PerformanceResultsfor1BPPHeuristics........................... 62 3.5.1 Worst-CasePerformance................................... 63 3.5.2 Average-CasePerformance ................................ 67 3.6 ExactApproachesandExtensions................................... 67 3.7 Exercises.............................................................. 68 3.8 Solutions.............................................................. 69 References.................................................................... 71 4 One-DimensionalCuttingStock .......................................... 73 4.1 ProblemStatementandNotations................................... 74 4.2 TheGilmore/GomoryModel ........................................ 75 4.3 SolvingtheContinuousRelaxation ................................. 78 4.3.1 TheRevisedSimplexMethod.............................. 78 4.3.2 TheFarleyBound........................................... 82 4.3.3 ColumnGeneration......................................... 83 4.4 GettingIntegerSolutions,Heuristics................................ 88 4.5 ABranch-and-BoundApproach..................................... 90 4.6 LowerBounds........................................................ 92 4.7 EquivalenceofInstances............................................. 94 4.8 AlternativeModels................................................... 96 4.8.1 ANonlinearModel......................................... 96 4.8.2 Kantorovich-TypeModels ................................. 97 4.8.3 TheOne-CutModel........................................ 100 4.8.4 TheArcflowModel......................................... 101 4.9 NeighboringProblems............................................... 103 4.10 TheCuttingStockProblemwithMultipleStockLengths ......... 105 4.11 IntegerRoundUpandModifiedIntegerRoundUpProperty...... 107 4.11.1 Definitions .................................................. 107 4.11.2 Transformations ............................................ 109 4.11.3 SubproblemsPossessingtheMIRUP...................... 109 4.11.4 FurtherRelaxations......................................... 113 4.11.5 MIRUPandHigher-DimensionalCuttingStock Problems.................................................... 115 4.11.6 Resume...................................................... 115 4.12 Exercises.............................................................. 116 4.13 Solutions.............................................................. 117 References.................................................................... 121 5 OrthogonalPackingFeasibility,Two-DimensionalKnapsack Problems .................................................................... 123 5.1 NonlinearBasicModels ............................................. 124 5.2 IntegerLinearProgrammingModels................................ 125 5.2.1 TheBeasley-TypeModel................................... 125 5.2.2 ThePadberg-TypeModel .................................. 127 5.3 NecessaryConditionsforFeasibility................................ 129 5.3.1 NaturalCriteriaforFeasibility............................. 129 5.3.2 TheBarRelaxation......................................... 130 5.3.3 TheContiguousRelaxation ................................ 134 5.4 TheInterval-GraphApproach ....................................... 138 5.4.1 TheInterval-GraphModelandaSimplification .......... 138 5.4.2 TheAlgorithmofFeketeandSchepers.................... 140 5.5 SufficientConditionsforFeasibility ................................ 143 5.5.1 RectangularPieces.......................................... 143 5.5.2 QuadraticPieces............................................ 144 5.6 AConstructiveBranch-and-BoundAlgorithm ..................... 145 5.6.1 TheContourConcept....................................... 145 5.6.2 ABranch-and-BoundAlgorithm........................... 147 5.6.3 UpperBounds............................................... 148 5.6.4 EquivalenceandDominance............................... 151 5.7 FurtherApproachesfortheOPP..................................... 152 5.8 Exercises.............................................................. 153 5.9 Solutions.............................................................. 154 References.................................................................... 155 6 OptimalGuillotineCutting................................................ 157 6.1 ProblemStatements.................................................. 157 6.2 GeneralGuillotineCutting........................................... 158 6.3 Two-StageGuillotineCutting........................................ 164 6.4 Three-StageGuillotineCutting ..................................... 165 6.5 FurtherPatternTypes ................................................ 170 6.6 BoundedGuillotineCutting ......................................... 171 6.6.1 TheAlgorithmofWang.................................... 171 6.6.2 ILPModelsforBounded2-StageCutting................. 172 6.7 GuillotineCuttingStockProblems.................................. 175 6.7.1 ColumnGenerationApproach............................. 175 6.7.2 One-CutILPModelofthe2-and3-Stage2CSP ......... 176 6.7.3 Extensions .................................................. 177 6.8 Three-DimensionalGuillotineCutting.............................. 177 6.9 Exercises.............................................................. 179 6.10 Solutions.............................................................. 179 References.................................................................... 180 7 PackingRectanglesintoaStrip........................................... 183 7.1 IntegerLinearProgrammingModels................................ 184 7.1.1 ABeasley-TypeModel..................................... 184 7.1.2 ALinearMixed-IntegerModel ............................ 185 7.2 LowerBounds........................................................ 186 7.2.1 NaturalLowerBounds ..................................... 186 7.2.2 CombinatorialBounds ..................................... 189 7.2.3 LPBasedBounds........................................... 190 7.3 HeuristicsfortheStripPackingProblem ........................... 195 7.3.1 HeuristicsfortheOfflineStripPackingProblem......... 195 7.3.2 PerformanceResults........................................ 198 7.3.3 ShelfAlgorithmsforOnlineProblems.................... 203 7.4 LocalSearchandMetaheuristics.................................... 207 7.4.1 LocalSearch................................................ 207 7.4.2 Metaheuristics .............................................. 208 7.5 ABranch-and-BoundAlgorithm.................................... 211 7.6 GuillotineStripPacking ............................................. 214 7.6.1 QualityofGuillotinePatterns.............................. 215 7.6.2 ILPModelsfork-StageGuillotineStripPacking......... 218 7.7 Exercises.............................................................. 221 7.8 Solutions.............................................................. 222 References.................................................................... 225 8 Two-DimensionalBinPacking ............................................ 227 8.1 ProblemStatementandModeling................................... 227 8.1.1 Non-GuillotinePatterns.................................... 229 8.1.2 Two-StageGuillotinePatterns ............................. 230 8.1.3 Three-StageGuillotinePatterns............................ 232 8.2 BasicResults ......................................................... 234 8.3 LowerBounds........................................................ 237 8.4 SolutionApproaches................................................. 240 8.5 Exercises.............................................................. 241 8.6 Solutions.............................................................. 242 References.................................................................... 243 9 QualityRestrictions........................................................ 245 9.1 CuttingofVariableLengths.......................................... 245 9.1.1 ProblemFormulation....................................... 246 9.1.2 Modeling.................................................... 247 9.1.3 OptimalValueFunction.................................... 248 9.1.4 UpperBoundsandSolutionStrategy...................... 250 9.1.5 AllocatingaSinglePiece................................... 254 9.1.6 SolutionApproaches ....................................... 258 9.1.7 Example..................................................... 260 9.2 DefectiveorForbiddenRegions..................................... 264 9.2.1 ProblemFormulation....................................... 264 9.2.2 BasicRecursion............................................. 266 9.2.3 Improvements............................................... 267 9.2.4 ExamplesandExtensions.................................. 270 9.3 Exercises.............................................................. 272 9.4 Solutions.............................................................. 274 References.................................................................... 277 10 PalletLoading............................................................... 279 10.1 TheStandardPalletLoadingProblem............................... 279 10.1.1 ProblemStatement ......................................... 280 10.1.2 EquivalenceofPLPInstances.............................. 280 10.1.3 UpperBounds............................................... 282 10.2 TheG4Heuristic..................................................... 284 10.2.1 Notations,Block-Heuristics................................ 284 10.2.2 TheG4-Structure........................................... 286 10.2.3 TheBasicRecursion........................................ 287 10.2.4 Improvements............................................... 289 10.3 TheGuillotinePalletLoadingProblem............................. 291 10.3.1 BasicModelandAlgorithm................................ 291 10.3.2 DefinitionofSubproblems................................. 294 10.3.3 PropertiesofE0andE1..................................... 296 10.3.4 AlgorithmforSubproblem1............................... 299 10.4 ThePalletLoadingProblemwithSeveralItemTypes.............. 302 10.5 TheMultiPalletLoadingProblem .................................. 305 10.5.1 ProblemStatement ......................................... 305 10.5.2 SolutionStrategy ........................................... 306 10.5.3 TheMPLPAlgorithm...................................... 307 10.5.4 TheDistributingProcedure ................................ 308 10.5.5 TheLoadingProcedure..................................... 309 10.5.6 AlternativeLoadingProcedure ............................ 311 10.5.7 Examples.................................................... 311 10.6 Exercises.............................................................. 313 10.7 Solutions.............................................................. 313 References.................................................................... 315 11 ContainerLoading ......................................................... 317 11.1 ProblemStatements.................................................. 317 11.2 TheContainerLoadingProblem .................................... 318 11.2.1 IntegerLinearProgrammingModel....................... 318 11.2.2 TheBasicAlgorithm ....................................... 321 11.2.3 TheContourConcept....................................... 323 11.2.4 FurtherHeuristics........................................... 327 11.3 MultiContainerLoadingandThree-DimensionalBinPacking ... 328 11.4 Three-DimensionalStripPacking................................... 329 11.5 LPBounds............................................................ 330 11.5.1 TheBarRelaxationoftheCLP............................ 330 11.5.2 TheBarRelaxationoftheMCLP.......................... 336 11.5.3 ALayerRelaxationfortheContainerLoading Problem ..................................................... 338 11.6 Exercises.............................................................. 340 11.7 Solutions.............................................................. 341 References.................................................................... 343

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.