ebook img

Introduction to Artificial Intelligence PDF

232 Pages·2017·7.83 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Artificial Intelligence

Introduction to Artificial Intelligence MarcToussaint February6,2017 Themajorityofslidesonsearch,CSPandlogicareadaptedfromStuartRussell. This is a direct concatenation and reformatting of all lecture slides and exercises from theArtificialIntelligencecourse(winterterm2016/17,UStuttgart),includingindexing tohelpprepareforexams. Contents 1 Introduction 6 2 Search 14 Motivation&Outline 2.1 ProblemFormulation&Examples . . . . . . . . . . . . . . . . . . . . 14 Example:Romania(2:3)ProblemDefinition:Deterministic,fullyobservable(2:5) 2.2 BasicTreeSearchAlgorithms . . . . . . . . . . . . . . . . . . . . . . . 16 Treesearchimplementation: statesvsnodes(2:12)TreeSearch: GeneralAlgorithm (2:13)Breadth-firstsearch(BFS)(2:16)ComplexityofBFS(2:17)Uniform-costsearch (2:18)Depth-firstsearch(DFS)(2:19)ComplexityofDFS(2:20)Iterativedeepening search(2:22)ComplexityofIterativeDeepeningSearch(2:24)Graphsearchandre- peatedstates(2:26) 2.3 GreedyandA∗Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Best-firstSearch(2:30)GreedySearch(2:32)ComplexityofGreedySearch(2:35)A∗ search(2:36)A∗: Proof1ofOptimality(2:38)ComplexityofA∗(2:39)A∗: Proof2of Optimality(2:40)Admissibleheuristics(2:42)Memory-boundedA∗(2:45) 1 2 IntroductiontoArtificialIntelligence,MarcToussaint 3 Probabilities 34 Motivation & Outline Probabilities as (subjective) information calculus (3:3) Infer- ence:generalmeaning(3:5)FrequentistvsBayesian(3:6) 3.1 Basicdefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Definitionsbasedonsets(3:8)Randomvariables(3:9)Probabilitydistribution(3:10) Jointdistribution(3:11)Marginal(3:11)Conditionaldistribution(3:11)Bayes’Theo- rem(3:13)MultipleRVs,conditionalindependence(3:14) 3.2 Probabilitydistributions . . . . . . . . . . . . . . . . . . . . . . . . . . 39 BernoulliandBinomialdistributions(3:16)Beta(3:17)Multinomial(3:20)Dirichlet (3:21)Conjugatepriors(3:25) 3.3 Distributionsovercontinuousdomain . . . . . . . . . . . . . . . . . . 44 Dirac distribution (3:28) Gaussian (3:29) Particle approximation of a distribution (3:33) Utilities and Decision Theory (3:36) Entropy (3:37) Kullback-Leibler diver- gence(3:38) 3.4 MonteCarlomethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Monte Carlo methods (3:40) Rejection sampling (3:41) Importance sampling (3:42) Student’st,Exponential,Laplace,Chi-squared,Gammadistributions(3:44) 4 Bandits,MCTS,&Games 51 Motivation&Outline 4.1 Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Multi-armedBandits(4:2) 4.2 UpperConfidenceBounds(UCB) . . . . . . . . . . . . . . . . . . . . . 53 Exploration,Exploitation(4:7)UpperConfidenceBound(UCB1)(4:8) 4.3 MonteCarloTreeSearch . . . . . . . . . . . . . . . . . . . . . . . . . . 55 MonteCarloTreeSearch(MCTS)(4:14)UpperConfidenceTree(UCT)(4:19)MCTS forPOMDPs(4:20) 4.4 MCTSappliedtoPOMDPs* . . . . . . . . . . . . . . . . . . . . . . . . 58 4.5 GamePlaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Minimax(4:29)Alpha-BetaPruning(4:32)Evaluationfunctions(4:37)UCTforgames (4:38) 4.6 Beyondbandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 GlobalOptimization(4:43)GP-UCB(4:46)ActiveLearning(4:50) 4.7 ActiveLearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 IntroductiontoArtificialIntelligence,MarcToussaint 3 5 Formalmodelsofinteractivedomains 72 5.1 BasicTaxonomyofdomainmodels . . . . . . . . . . . . . . . . . . . . 72 PDDL (5:10) Noisy Deictic Rules (5:13) Markov Decision Process (5:15) POMDP (5:18)Dec-POMDP(5:22)Control(5:23) 6 DynamicProgramming 82 Motivation&Outline 6.1 DynamicProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Value Function (6:3) Bellman optimality equation (6:7) Value Iteration (6:9) Q- Function(6:10)Q-Iteration(6:11)ProofofconvergenceofQ-Iteration(6:12) 6.2 DynamicProgramminginBeliefSpace . . . . . . . . . . . . . . . . . . 88 7 ReinforcementLearning 94 Motivation&Outline 7.1 LearninginMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Temporaldifference(TD)(7:10)Q-learning(7:11)ProofofconvergenceofQ-learning (7:14)Eligibilitytraces(7:16)Model-basedRL(7:28) 7.2 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Epsilon-greedyexplorationinQ-learning(7:31)R-Max(7:32)BayesianRL(7:34)Op- timisticheuristics(7:35) 7.3 PolicySearch,Imitation,&InverseRL*. . . . . . . . . . . . . . . . . . 109 Policygradients(7:39)ImitationLearning(7:43)InverseRL(7:46) 8 ConstraintSatisfactionProblems 117 Motivation&Outline 8.1 ProblemFormulation&Examples . . . . . . . . . . . . . . . . . . . . 117 Inference (8:2) Constraint satisfaction problems (CSPs): Definition (8:4) Map- ColoringProblem(8:5) 8.2 MethodsforsolvingCSPs . . . . . . . . . . . . . . . . . . . . . . . . . 121 Backtracking (8:11) Variable order: Minimum remaining values (8:16) Variable or- der: Degreeheuristic(8:17)Valueorder: Leastconstrainingvalue(8:18)Constraint propagation(8:19)Tree-structuredCSPs(8:25) 4 IntroductiontoArtificialIntelligence,MarcToussaint 9 GraphicalModels 130 Motivation&Outline 9.1 BayesNetsandConditionalIndependence . . . . . . . . . . . . . . . 130 Bayesian Network (9:4) Conditional independence in a Bayes Net (9:8) Inference: generalmeaning(9:13) 9.2 InferenceMethodsinGraphicalModels . . . . . . . . . . . . . . . . . 136 Inferenceingraphicalmodels: overview(9:18)MonteCarlo(9:20)Importancesam- pling(9:23)Gibbssampling(9:25)Variableelimination(9:28)Factorgraph(9:31)Be- liefpropagation(9:37)Messagepassing(9:37)Loopybeliefpropagation(9:41)Junc- tiontreealgorithm(9:43)Maximuma-posteriori(MAP)inference(9:47)Conditional randomfield(9:48) 10 DynamicModels 150 Motivation&OutlineMarkovProcess(10:1)HiddenMarkovModel(10:2)Filtering, Smoothing,Prediction(10:3)HMM:Inference(10:4)HMMinference(10:5)Kalman filter(10:8) 11 PropositionalLogic 157 Motivation&Outline 11.1 Syntax&Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Knowledgebase:Definition(11:3)WumpusWorldexample(11:4)Logic:Definition, Syntax, Semantics (11:7) Propositional logic: Syntax (11:9) Propositional logic: Se- mantics(11:10)Logicalequivalence(11:12) 11.2 InferenceMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Inference(11:19)HornForm(11:23)ModusPonens(11:23)Forwardchaining(11:24) CompletenessofForwardChaining(11:27)BackwardChaining(11:28)Conjunctive NormalForm(11:31)Resolution(11:31)ConversiontoCNF(11:32) 12 First-OrderLogic 183 Motivation&Outline 12.1 TheFOLlanguage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 FOL:Syntax(12:4)Universalquantification(12:6)Existentialquantification(12:6) 12.2 FOLInference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Reductiontopropositionalinference(12:16)Unification(12:19)GeneralizedModus Ponens(12:20)ForwardChaining(12:21)BackwardChaining(12:27)Conversionto CNF(12:33)Resolution(12:35) IntroductiontoArtificialIntelligence,MarcToussaint 5 13 RelationalProbabilisticModellingandLearning 200 Motivation&Outline 13.1 STRIPS-likerulestomodelMDPtransitions . . . . . . . . . . . . . . . 200 MarkovDecisionProcess(MDP)(13:2)STRIPSrules(13:3)PlanningDomainDefini- tionLanguage(PDDL)(13:3)Learningprobabilisticrules(13:9)Planningwithprob- abilisticrules(13:11) 13.2 RelationalGraphicalModels . . . . . . . . . . . . . . . . . . . . . . . . 204 Probabilistic Relational Models (PRMs) (13:20) Markov Logic Networks (MLNs) (13:24)TheroleofuncertaintyinAI(13:31) 14 Exercises 212 14.1 Exercise1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 14.2 Exercise2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 14.3 Exercise3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 14.4 Exercise4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 14.5 Exercise5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 14.6 Exercise6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 14.7 Exercise6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 14.8 Exercise9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 14.9 Exercise7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Index 230 sdeeqcuiseinotniasl propositional relational spedrqeoucbielseniomtniasl sequential assignment CSP proploosgiitcional FOL constraint deterministic seBaFrSch gamesbacktarmalppicnrhkuiaimnn/ibganexgta ptrrooenpeasgation cfwhdai/nbiwndg MCTS UCB bandits utilities graphical FOL relational probabilistic Decision Theory muMltiD-aPgsent pVrod(gsy)rn,a aQmm(msi,cMain)DgPsreMlaDtioPnsal models mprsHogMpb. aeMpglaismeasftssfiigownn.dg p/bawssding gmraopdheiclsal ML Reinforcement Learning learning LeAacrtnivineg 6 IntroductiontoArtificialIntelligence,MarcToussaint 1 Introduction (someslidesbasedonStuartRussell’sAIcourse) • ThecurrenthypeaboutAI – Thesingularity – Ethics – Thevalueproblem – Theoutrageousinabilityofhumanstodefinewhatis“good” – Paperclips • What’stheroutetoAI? – Neuroscience?(EUBigBrainproject) – DeepLearning?(PureMachineLearning?,DeepMind(London)) – Social/Emotional/conciousnes/Feelingsstuff? – HardcoreclassicalAI?Modernprobabilistic/learningAI? – Robotics? • WhatarethingsAIneverbeabletodo? • WhyistherenouniversitydepartmentforIntelligenceResearch?! 1:1 UpsanddownsofAI–history 1943 McCulloch&Pitts:Booleancircuitmodelofbrain 1950 Turing’s“ComputingMachineryandIntelligence” 1952–69 Look,Ma,nohands! 1950s EarlyAIprograms,includingSamuel’scheckersprogram, Newell&Simon’sLogicTheorist,Gelernter’sGeometryEngine 1956 Dartmouthmeeting:“ArtificialIntelligence”adopted 1965 Robinson’scompletealgorithmforlogicalreasoning 1966–74 AIdiscoverscomputationalcomplexity Neuralnetworkresearchalmostdisappears 1969–79 Earlydevelopmentofknowledge-basedsystems 1980–88 Expertsystemsindustrybooms 1988–93 Expertsystemsindustrybusts:“AIWinter” 1985–95 Neuralnetworksreturntopopularity 1988– Resurgenceofprobability;generalincreaseintechnicaldepth “NouvelleAI”:ALife,GAs,softcomputing 1995– Agents,agents,everywhere... 2003– Human-levelAIbackontheagenda 1:2 Whatisintelligence? • Maybeitiseasiertofirstaskwhatsystemsweactuallytalkabout: IntroductiontoArtificialIntelligence,MarcToussaint 7 – Decisionmaking – Interactingwithanenvironment • Thendefineobjectives! – Quantifywhatyouconsidergoodorsuccessful – Intelligencemeanstooptimize... 1:3 IntelligenceasOptimization? • A cognitive scientist or psychologist: “Why are you AI people always so ob- sessedwithoptimization? Humansarenotoptimal!” • That’satotalmisunderstandingofwhat“beingoptimal”means. • Optimizationprinciplesareameanstodescribesystems: – Feynman’s“unworldlinessmeasure”objectivefunction – Everythingcanbecastoptimal–undersomeobjective – Optimalityprinciplesarejustascientificmeansofformallydescribingsystemsand theirbehaviors(esp.inphysics,economy,...andAI) – Toussaint, Ritter&Brock: TheOptimizationRoutetoRobotics–andAlternatives. Ku¨nstliche Intelligenz,2015 • Generally,Iwouldroughlydistinguishthreebasictypesofproblems: – Optimization – Logical/categorialInference (CSP,findfeasiblesolutions) – ProbabilisticInference 1:4 Whatareinterestinggenericobjectives • Learntocontrolalldegreesoffreedomoftheenvironmentthatarecontrollable – DOFs are mechanical/kinematics DOFs, objects, light/temperature, mood of hu- mans – Thisobjectiveisgeneric:nopreferences,notlimits – ImpliestoactivelygoexploringandfindingcontrollableDOFs – ActingtoLearning(insteadof’LearningtoAct’forafixedtask) – Relatednotionsinotherfields: (Bayesian)ExperimentalDesign,ActiveLearning,cu- riosity,intrinsicmotivation • AttimeT,thesystemwillbegivenarandomtask(e.g.,randomgoalconfigu- rationofDOFs);theobjectivethenistoreachitasquicklyaspossible 1:5 8 IntroductiontoArtificialIntelligence,MarcToussaint Interactivedomains • Weassumetheagentisininteractionwithadomain. – Theworldisinastatest ∈S (seebelowonwhatthatmeans) – Theagentsensesobservationsyt ∈O – Theagentdecidesonanactionat ∈A – Theworldtransitionstoanewstatest+1 • Theobservationy describesallinformationreceivedbytheagent(sensors,also t rewards,feedback,etc)ifnotexplicitlystatedotherwise (ThetechnicaltermforthisisaPOMDP) 1:6 State • Thenotionofstateisoftenusedimprecisely • Atanytimet,weassumetheworldisinastates ∈S t • s isastatedescriptionofadomainifffutureobservationsy ,t+ >tarecondi- t t+ tionallyindependentofallhistoryobservationsy ,t− <tgivens andfuture t− t actionsa : t:t+ agent y0 a0 y1 a1 y2 a2 y3 a3 s0 s1 s2 s3 • Notes: – Intuitively,stdescribeseverythingabouttheworldthatis“relevant” – Worldsdonothaveadditionallatent(hidden)variablestothestatest 1:7 Examples IntroductiontoArtificialIntelligence,MarcToussaint 9 • Whatisasufficientdefinitionofstateofacomputerthatyouinteractwith? • Whatisasufficientdefinitionofstateforathermostatscenario? (First,assumethe’room’isanisolatedchamber.) • Whatisasufficientdefinitionofstateinanautonomouscarcase? →inrealworlds,theexactstateispracticallynotrepresentable →allmodelsofdomainswillhavetomakeapproximatingassumptions(e.g., aboutindependencies) 1:8 Howcanagentsbeformallydescribed? ...or,whatformalclassesofagentsdoexist? • Basicalternativeagentmodels: – Theagentmapsyt (cid:55)→at (stimulus-responsemapping..non-optimal) – Theagentstoresallpreviousobservationsandmaps f : y ,a (cid:55)→a 0:t 0:t-1 t f iscalledagentfunction. Thisisthemostgeneralmodel,includingtheothersas specialcases. – Theagentstoresonlytherecenthistoryandmaps yt−k:t,at−k:t-1 (cid:55)→at(crude,butmaybeagoodheuristic) – Theagentissomemachinewithitsowninternalstatent,e.g.,acomputer,afinite statemachine,abrain... Theagentmaps(nt-1,yt)(cid:55)→nt(internalstateupdate)and n (cid:55)→a t t – The agent maintains a full probability distribution (belief) bt(st) over the state, maps(bt-1,yt)(cid:55)→bt(Bayesianbeliefupdate),andbt (cid:55)→at 1:9 POMDPcoupledtoastatemachineagent 10 IntroductiontoArtificialIntelligence,MarcToussaint agent n0 n1 n2 y0 a0 y1 a1 y2 a2 s0 s1 s2 r0 r1 r2 1:10 Multi-agentdomainmodels (ThetechnicaltermforthisisaDecentralizedPOMDPs) (fromKumaretal.,IJCAI2011) • Thisisaspecialtype(simplification)ofageneralDEC-POMDP • Generally,thislevelofdescriptionisverygeneral,butNEXP-hard Approximatemethodscanyieldverygoodresults,though 1:11 • Wegaveaverygeneralmodel(formalization)ofwhatitmeansthatanagent takesdecisionsinaninteractiveenvironment • Therearemanyflavorsofthis: – Fullyobservablevs.partiallyobservable – Singleagentvs.multiagent – Deterministicvs.stochastic – Structureofthestatespace:Discrete,continuous,hybrid;factored;relational – Discretevs.continuoustime 1:12 Organisation

Description:
Stuart Russell & Peter Norvig: Artificial Intelligence – A Modern Approach. – Many slides are adopted from Anmeldung: Im LSF / beim Pr ¨ufungsamt.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.