ebook img

Introduction to Andy Ruina and Rudra Pratap PDF

1057 Pages·2014·45.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Andy Ruina and Rudra Pratap

Introduction to S TATICS Filename:tfigure-arecibo Andy Ruina and Rudra Pratap OxfordUniversityPress(Preprint) MostrecentmodificationsonAugust15,2014. Reference Tables: The front and back tables concisely summarize much of the text material. Summary of Mechanics 0) Thelawsofmechanicsapplytoanycollectionofmaterialor‘body.’ Thisbodycouldbetheoverallsystemofstudy oranypartofit. Intheequationsbelow,theforcesandmomentsarethosethatshowonafreebodydiagram. Interacting bodiescauseequalandoppositeforcesandmomentsoneachother. I) LinearMomentumBalance(LMB)/ForceBalance EquationofMotion Fi L The total force on a body is equal (I) to its rate of change of linear momentum. Impulse-momentum t2 (integratingintime) Fi·dt L Netimpulseisequaltothechangein (Ia) t1 momentum. Conservationofmomentum L=0 When there is no net force the linear (Ib) (if Fi 0) L=L2 L1 0 momentum does not change. Statics Fi 0 If the inertial terms are zero the (Ic) (ifLisnegligible) net force on system is zero. II) AngularMomentumBalance(AMB)/MomentBalance Equationofmotion M H The sum of moments is equal to the (II) C C rateofchangeofangularmomentum. Impulse-momentum(angular) t2 M dt H The net angular impulse is equal to (IIa) (integratingintime) C C t1 the change in angular momentum. Conservationofangularmomentum H 0 C If there is no net moment about point (IIb) (if M 0) H H H 0 C C C2 C1 C then the angular momentum about point C does not change. Statics M 0 If the inertial terms are zero then the (IIc) (ifH isnegligible) C C total moment on the system is zero. III) PowerBalance(1stlawofthermodynamics) Equationofmotion Q P E E E Heat flow plus mechanical power (III) K P int into a system is equal to its change E in energy (kinetic + potential + internal). t2 t2 forfinitetime Qdt Pdt E Thenetenergyflowgoinginisequal (IIIa) t1 t1 tothenetchangeinenergy. ConservationofEnergy E 0 If no energyflows into a system, (IIIb) (ifQ P 0) E E E 0 2 1 then its energydoesnotchange. Statics Q P E E If there is no change of kinetic energy (IIIc) (ifE isnegligible) P int K then the change of potential and internal energy is due to mechanical work and heat flow. PureMechanics (ifheatflowanddissipation P E E In a system well modeled as purely (IIId) K P arenegligible) mechanical the change of kinetic and potential energy is due to mechanical work on the system. Filename:Summaryofmechanics Some definitions (Alsoseetheindexandbacktables) *r or *x Position e.g.,*r *r is the position of a point i i (cid:17) i=O relativetotheorigin,O. d*r *v Velocity e.g.,*v *v is the velocity of a point i (cid:17) dt i (cid:17) i=O relativetoO,measuredinanon-rotatingref- erenceframe. d*v d2*r *a Acceleration e.g.,*a *a istheaccelerationofapointi (cid:17) dt D dt2 i (cid:17) i=O relativetoO,measuredinaNewtonianframe. * F Force e.g.,theforceonAfromBisF . AfromB * * * M or M M MomentorTorque e.g., the moment of a collection of forces CD =C aboutpointC. *! Angularvelocity Ameasureofrotationalvelocityofarigidob- ject.*! =angularvelocityofrigidobjectB. B *(cid:11) *! Angularacceleration Ameasureofrotationalaccelerationofarigid (cid:17) P object. m*v discrete * i i L Linearmomentum Ameasureofasystem’snettranslationalrate (cid:17) 8 P*vdm continuous (weightedbymass). < m R*v D :tot cm m*a discrete * i i LP Rate of change of linear momen- The aspect of motion that balances the net (cid:17) 8 P*adm continuous tum forceonasystem. < m R*a D :tot cm *r m*v discrete H* i=C(cid:2) i i AngularmomentumaboutpointC Ameasureoftherotationalrateofasystem =C (cid:17) 8< P*r=C (cid:2)*vdm continuous about a point C (weighted by mass and dis- tancefromC). R : *r m*a discrete H*P=C (cid:17) 8< P*r=iC=C(cid:2)(cid:2)*admi i continuous RtuamteaobfocuhtapnogientoCfangularmomen- TtohrequaesopnecatsoyfstmemotiaobnouthtaatpboainlatnCc.es the net R : 1 m v2 discrete E 2 i i Kineticenergy Ascalarmeasureofnetsystemmotion. K (cid:17) 8 1Pv2dm continuous < 2 R : E (heat-liketerms) Internalenergy The non-kinetic non-potential part of a sys- int D tem’stotalenergy. P F**v M* *! Powerofforcesandtorques The mechanical energy flow into a system. (cid:17) i(cid:1) i C i(cid:1) i Also,P W,rateofwork. P P (cid:17) P Icm Icm Icm xx xy xz (cid:140)Icm(cid:141) 2 Icm Icm Icm 3 Moment of inertia matrix about Ameasureofthemassdistributioninarigid (cid:17) xy yy yz centerofmass(cm) object. 66 Ixczm Iyczm Izczm 77 6 7 4 5 iv Chapter0. (cid:13)c Rudra Pratap and Andy Ruina, 1994-2013. All rights reserved. No part of this book may be reproduced, stored in a retrievalsystem,ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,orotherwise,without priorwrittenpermissionoftheauthors. Thisbookisapre-releaseversionofabookinprogressforOxfordUniversityPress. Acknowledgements. Thefollowingareamongstthosewhohavehelpedwiththisbookaseditors,artists,texprogrammers, advisors,criticsorsuggestersandcreatorsofcontent: WilliamAdams,AlexaBarnes,PranavBhounsule,JosephBurns,Hye Yeon Choe, Jason Cortell, Gabor Domokos, Max Donelan, Thu Dong, Gail Fish, Mike Fox, John Gibson, Robert Ghrist, VivekGupta,SaptarsiHaldar,DaveHeimstra,TheresaHowley,HerbertHui,MichaelMarder,ElainaMcCartney,Saskyavan Nouhuys,HorstNowacki,JimPapadopoulos,KalpanaPratap,DaneQuinn,RichardRand,C.V.Radakrishnan,NidhiRathi, Phoebus Rosakis, Les Schaffer, Ishan Sharma, David Shipman, Jill Startzell, Brett Tallman, Tian Tang, Kim Turner and Bill Zobrist. Our on-again off-again editor Peter Gordon has been supportive throughout. Many other friends, colleagues, relatives,students,andanonymousreviewershavealsomadehelpfulsuggestions. WecertifyArthurOgawa,IvanDobrianov,andStephenHicksasTeXgeniuses. MikeColemanworkedextensivelyonthetext,wrotemanyoftheexamplesandhomeworkproblemsandmademanyfigures. DavidHo,R.Manjula,AbhayandMiekeRuinadreworimprovedmostofthedrawings. Creditforsomeofthehomework problems retrieved from Cornell archives is due to various Theoretical and Applied Mechanics faculty. Harry Soodak and MartinTierstenprovidedsomeproblemsfromtheirincompletebook. SoftwarewehaveusedtopreparethisbookincludesTEXshop(forLATEX)withmanycustomfeaturesimplementedbyStephen Hicks,AdobeIllustrator,GraphicsConverterandMATLAB. IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. Brief Contents Fronttables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i BriefContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 DetailedContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Tothestudent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Part I: Basics for Mechanics 26 1 Whatismechanics? . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Vectors: position,forceandmoment . . . . . . . . . . . . . . . . 42 3 FBDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Part II: Statics 190 4 Staticsofoneobject. . . . . . . . . . . . . . . . . . . . . . . . . 190 5 Trussesandframes . . . . . . . . . . . . . . . . . . . . . . . . . 262 6 Transmissionsandmechanisms. . . . . . . . . . . . . . . . . . . 328 7 Tension,shearandbendingmoment . . . . . . . . . . . . . . . . 382 8 Hydrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 Part III: Dynamics 422 9 Dynamicsin1D . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 10 Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 11 Particlesinspace . . . . . . . . . . . . . . . . . . . . . . . . . . 548 12 Manyparticlesinspace . . . . . . . . . . . . . . . . . . . . . . . 596 13 Straightlinemotion . . . . . . . . . . . . . . . . . . . . . . . . . 622 14 Circularmotionofaparticle . . . . . . . . . . . . . . . . . . . . 662 15 Circularmotionofarigidobject . . . . . . . . . . . . . . . . . . 694 16 Planarmotionofanobject . . . . . . . . . . . . . . . . . . . . . 774 17 Time-varyingbasisvectors . . . . . . . . . . . . . . . . . . . . . 860 18 Constrainedparticlesandrigidobjects . . . . . . . . . . . . . . . 930 Appendices 1000 A Unitsanddimensions . . . . . . . . . . . . . . . . . . . . . . . .1000 B Friction: perspectivesonfrictionlaws . . . . . . . . . . . . . . .1012 C ThesimplestODEsandtheirsolutions . . . . . . . . . . . . . . .1022 D TheoremsforSystems . . . . . . . . . . . . . . . . . . . . . . .1026 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. 1 2 Chapter0. Answerstosomehomeworkproblems . . . . . . . . . . . . . . . . .1036 Backtables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1045 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. Detailed Contents Fronttables i Summaryofmechanics . . . . . . . . . . . . . . . . . . . i Somebasicdefinitions . . . . . . . . . . . . . . . . . . . . ii BriefContents 1 DetailedContents 3 Preface 12 General issues about content, level, organization, style and motivation. Studyadvicestartsonpage 16. Tothestudent 16 Howtostudy. Theuseofcomputers. 0.1 Anoteoncomputation . . . . . . . . . . . . . . . . . . . . . 21 Box: Informalcomputercommands . . . . . . . . . . . . . 24 Part I: Basics for Mechanics 26 1 Whatismechanics? 26 Mechanicscanpredictforcesandmotionsbyusingthethreepillarsofthe subject: I. models of physical behavior, II. geometry, and III. the basic mechanicsbalancelaws. Thelawsofmechanicsareinformallysumma- rized in this introductory chapter. The extreme accuracy of Newtonian mechanicsisemphasized,despiterelativityandquantummechanicssup- posedly having ‘overthrown’ seventeenth-century physics. Various uses oftheword‘model’aredescribed. 1.1 Thethreepillars . . . . . . . . . . . . . . . . . . . . . . . . 27 1.2 Mechanicsiswrong,whystudyit? . . . . . . . . . . . . . . 33 1.3 Thehierarchyofmodels . . . . . . . . . . . . . . . . . . . . 35 2 Vectors: position,forceandmoment 42 The key vectors for statics, namely relative position, force, and mo- ment, are used to develop vector skills. Notational clarity is empha- sized because good vector calculation demands distinguishing vectors fromscalars. Vectoradditionismotivatedbytheneedtoaddforcesand relativepositions. Dotproductsaremotivatedasthetoolwhichreduces vectorequationstoscalarequations.Andcrossproductsaremotivatedas IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. 3 4 Chapter0.DetailedContents DetailedContents theformulawhichcorrectlycalculatestheheuristicallymotivatedquan- titiesofmomentandmomentaboutanaxis. 2.1 Notationandaddition . . . . . . . . . . . . . . . . . . . . . 44 Box2.1Thescalarsinmechanics . . . . . . . . . . . . . . 45 Box2.2TheVectorsinMechanics . . . . . . . . . . . . . 46 2.2 Thedotproductoftwovectors . . . . . . . . . . . . . . . . 62 Box2.3Basicfeaturesofthevectordotproduct. . . . . . . 62 Box2.4abcos(cid:18) a b a b a b . . . . . . . 67 x x y y z z ) C C 2.3 Vectorcrossproduct . . . . . . . . . . . . . . . . . . . . . . 71 Box2.5Usesofthecrossproduct . . . . . . . . . . . . . . 72 Box2.6Crossproductasamatrixmultiply . . . . . . . . . 78 Box2.7Thecrossproduct: fromgeometrytocomponents . 79 2.4 Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.5 Solvingvectorequations . . . . . . . . . . . . . . . . . . . . 97 Box2.8Therulesofvectoralgebra. . . . . . . . . . . . . 98 Box2.9Vectortrianglesandthelawsofsinesandcosines . 100 Box2.10Existence,uniqueness,andgeometry . . . . . . . 112 ProblemsforChapter2 . . . . . . . . . . . . . . . . . . . . . . . 117 3 FBDs 126 Afree-bodydiagramisasketchofthesystemtowhichyouwillapplythe lawsofmechanics. Thediagramshowsallofthenon-negligibleexternal forcesandcoupleswhichactonthesystem. Thediagramtellswhatma- terial is in the system and also what is known, and what is not known, about the forces. Mechanics reasoning depends on free-body diagrams so we give tips about how to avoid common mistakes. On a free-body diagram systems of forces are often replaced with ‘equivalent’ forces, a specialcaseofwhichisaweightforceatthecenterofgravity. 3.1 Equivalentforcesystems . . . . . . . . . . . . . . . . . . . . 129 Box3.1 meansadd . . . . . . . . . . . . . . . . . . . . 131 Box3.2Equivalentatonepoint equivalentatallpoints 132 P ) Box3.3A“wrench”canrepresentanyforcesystem . . . . 133 3.2 Centerofmassandgravity. . . . . . . . . . . . . . . . . . . 138 Box3.4Like ,thesymbol alsomeansadd . . . . . . . 139 Box3.5Eachsubsystemislikeaparticle . . . . . . . . . . 144 P R Box3.6TheCOMofatriangleisath=3 . . . . . . . . . . 148 3.3 Interactions,forces&partialFBDs . . . . . . . . . . . . . . 154 VectornotationforFBDs . . . . . . . . . . . . . . . . . . 157 Box3.7Free-bodydiagramfirst,mechanicsreasoningafter 164 Box3.8ActionandreactiononpartialFBD’s . . . . . . . 166 3.4 Contact: Sliding,friction,androlling . . . . . . . . . . . . . 169 ProblemsforChapter3 . . . . . . . . . . . . . . . . . . . . . . . 183 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. Chapter0.DetailedContents DetailedContents 5 Part II: Statics 190 4 Staticsofoneobject 190 One object is in equilibrium if the forces and moments balance. For a particle,forcebalancetellsall. Butforanextendedobject,momentbal- ance is also essential. There are special shortcuts for an objects that hasexactlytwoorexactlythreeforcesactingonit. Iffrictionforcesare relevant the possibility of motion needs to be taken into account. Many real-world problems are not statically determinate and thus yield either only partial solutions, or yield full solutions after you have made extra assumptions. 4.1 Staticequilibriumofaparticle . . . . . . . . . . . . . . . . . 192 Box4.1Existenceanduniqueness . . . . . . . . . . . . . 196 Box4.2Thesimplificationofdynamicstostatics . . . . . . 199 4.2 Equilibriumofoneobject . . . . . . . . . . . . . . . . . . . 206 Box4.3Two-forcebodies . . . . . . . . . . . . . . . . . . 211 Box4.4Three-forcebodies . . . . . . . . . . . . . . . . . 212 Box4.5Momentbalanceabout3pointsissufficientin2D . 213 4.3 Equilibriumwithfrictionalcontact . . . . . . . . . . . . . . 218 Box4.6Undrivenwheelsandtwoforcebodies . . . . . . 222 4.4 Internalforces . . . . . . . . . . . . . . . . . . . . . . . . . 232 4.5 3Dstaticsofonepart . . . . . . . . . . . . . . . . . . . . . 238 Box4.7Staticallydeterminatewaystoholdanobjectin3D 244 ProblemsforChapter4 . . . . . . . . . . . . . . . . . . . . . . . 248 5 Trussesandframes 262 Hereweconsidercollectionsofpartsassembledsoastoholdsomething up or hold something in place. Emphasis is on trusses, assemblies of bars connected by pins at their ends. Trusses are analyzed by drawing free-body diagrams of the pins or of bigger parts of the truss (method ofsections). Frameworksbuiltwithotherthantwo-forcebodiesarealso analyzedbydrawingfree-bodydiagramsofparts.Structurescanberigid or not and redundant or not, as can be determined by the collection of equilibriumequations. 5.1 Methodofjoints . . . . . . . . . . . . . . . . . . . . . . . . 264 5.2 Themethodofsections . . . . . . . . . . . . . . . . . . . . 281 5.3 Solvingtrussesonacomputer . . . . . . . . . . . . . . . . . 288 5.4 Framesandstructures . . . . . . . . . . . . . . . . . . . . . 299 Box5.1The‘methodofbarsandpins’fortrusses . . . . . 302 5.5 Advancedtrussconcepts: determinacy . . . . . . . . . . . . 309 Box5.2Structuralrigidityandgeometriccongruence . . . 314 Box5.3Rigidity,redundancy,linearalgebraandmaps . . 315 ProblemsforChapter5 . . . . . . . . . . . . . . . . . . . . . . . 320 6 Transmissionsandmechanisms 328 Some collections of solid parts are assembled so as to cause force or torque in one place given a different force or torque in another. These include levers, gear boxes, presses, pliers, clippers, chain drives, and crank-drives. Besides solid parts connected by pins, a few special- IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. 6 Chapter0.DetailedContents DetailedContents purpose parts are commonly used, including springs and gears. Tricks for amplifying force are usually based on principals idealized by pul- leys, levers, wedges and toggles. Force-analysis of transmissions and mechanisms is done by drawing free-body diagrams of the parts, writ- ingequilibriumequationsforthese,andsolvingtheequationsfordesired unknowns. 6.1 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Box6.1‘Zero-length’springs . . . . . . . . . . . . . . . . 331 Box6.2Howstiffaspringisasolidrod . . . . . . . . . . 338 Box6.3Stifferbutweaker . . . . . . . . . . . . . . . . . . 338 Box6.4Apuzzlewithtwospringsandthreeropes. . . . . . 339 Box6.52Dgeometryofspringstretch . . . . . . . . . . . 342 6.2 Forceamplification . . . . . . . . . . . . . . . . . . . . . . 351 6.3 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 362 Box6.6Shearswithgears . . . . . . . . . . . . . . . . . . 366 ProblemsforChapter6 . . . . . . . . . . . . . . . . . . . . . . . 373 7 Tension,shearandbendingmoment 382 The ‘internal forces’ tension, shear and bending moment can vary from point to point in long narrow objects. Here we introduce the notion of graphingthisvariationandnotingthefeaturesofthesegraphs. 7.1 Arbitrarycuts . . . . . . . . . . . . . . . . . . . . . . . . . 383 7.2 Singularityfunctions . . . . . . . . . . . . . . . . . . . . . . 399 ProblemsforChapter7 . . . . . . . . . . . . . . . . . . . . . . . 404 8 Hydrostatics 406 Hydrostaticsconcernstheequivalentforceandmomentduetodistributed pressure on a surface from a still fluid. Pressure increases with depth. With constant pressure the equivalent force has magnitude = pressure times area, acting at the centroid. For linearly-varying pressure on a rectangular plate the equivalent force is the average pressure times the area acting 2/3 of the way down. The net force acting on a totally sub- merged object in a constant density fluid is the displaced fluid’s weight actingatthecentroid. 8.1 Fluidpressure . . . . . . . . . . . . . . . . . . . . . . . . . 407 Box8.1AddingforcestoderiveArchimedes’principle . . . 410 Box8.2Pressuredependsonpositionbutnotonorientation 411 ProblemsforChapter8 . . . . . . . . . . . . . . . . . . . . . . . 419 Part III: Dynamics 422 9 Dynamicsin1D 422 ThescalarequationF Dmaintroducestheconceptsofmotionandtime derivatives to mechanics. In particular the equations of dynamics are seen to reduce to ordinary differential equations, the simplest of which have memorable analytic solutions. The harder differential equations needbesolvedonacomputer. Weexplorevariousconceptsandapplica- IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009.

Description:
vector equations to scalar equations. And cross products are motivated as. Introduction to Statics and Dynamics, c. Andy Ruina and Rudra Pratap
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.