ebook img

Introduction to Algebraic Topology PDF

67 Pages·2011·0.38 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Algebraic Topology

Introduction to Algebraic Topology MitschriderVorlesungvon Dr.M.Michalogiorgaki TobiasBerner UniversitätZürich Frühjahrssemester2009 Contents 1 Topology 4 1.1 Topologicalspacesandcontinuousfunctions. . . . . . . . . . . . . . . . . 4 1.1.1 Topologicalspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Continuousfunctions . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Conectedness&Compactness . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Connectedspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Algebraictopology 16 2.1 Fundamentalgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1 Pathhomotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 efundamentalgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Coveringspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Liingproperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 efundamentalgroupofthecircleandapplications . . . . . . . . . . . . 27 2.5.1 eFundamentaleoremofAlgebra . . . . . . . . . . . . . . . . 28 2.5.2 Deformationretractsandhomotopytype . . . . . . . . . . . . . . 29 2.6 SeifertvonKampeneorem. . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.1 Directsumsofabeliangroups . . . . . . . . . . . . . . . . . . . . . 35 2.7 Freeabeliangroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.8 Freeproductsofgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.8.1 Freegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8.2 eSeifert-vanKampentheorem. . . . . . . . . . . . . . . . . . . 43 2.9 CWcomplexes(cellcomplexes) . . . . . . . . . . . . . . . . . . . . . . . . 47 2.10 Surfaces(two-dimensionalmanifolds) . . . . . . . . . . . . . . . . . . . . 49 2.10.1 Fundamentalgroupofsurfaces . . . . . . . . . . . . . . . . . . . . 49 2.10.2 Homologyofsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.10.3 Classi(cid:277)cationofsurfaces . . . . . . . . . . . . . . . . . . . . . . . . 51 2.11 Knottheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.12 Classi(cid:277)cationofcoveringspaces . . . . . . . . . . . . . . . . . . . . . . . . 58 Index 66 2 CONTENTS Literature • Muncres:Topology2ndedition • Jänich:Topologie • Massey:AlgebraicTopology:AnIntroduction • Stöcker,Zieschang:AlgebraischeTopologie • Lickorish:Anintroductiontoknottheory Introduction Incalculus,youhavestudiedRn,n∈N,aswellasfunctionsf ∶Rk →Rℓ,k;ℓ∈N. You havestudiednotionssuchasneighbourhoodofapointx∈Rn,aswellasconvergenceand continuityofafunctionf atapointx∈Rk. Forthisstudy,youhaveusedtheEuclidean metric. Forinstanceiff ∶R→R,wesaythatf iscontinuousatx∈Rif∀">0∃(cid:14)>0suchthat if∣x−x ∣<(cid:14)then∣f(x)−f(x )∣<". 0 0 Weusedthemetricd∶R×R→R,with(x;y)↦∣x−√y∣.IngeneraltheEuclideanmetric d∶Rn×Rn→Rwith(x1;:::;xn);(y1;:::;yn)↦ ∑ni=1(xi−yi)2. Intopology, westudynotionssuchasneighbourhoodofapointx ∈ X, convergence, continuityforageneralsetX.Forthisstudyametricisnotnecessary.Whatwewilluse isopensetsinX. Inalgebraictopology,weuseabstractalgebratostudytopologicalproperties. 3 1 Topology 1.1. Topologicalspacesandcontinuousfunctions 1.1.1. Topologicalspaces ConsiderasetX andP(X)∶={U ∣U ⊆X}. De(cid:277)nition1.1 AtopologyonX isacollectionT ⊂P(X)suchthat 1. ∅;X ∈T. 2. IfUi∈T ∀i∈I,then⋃i∈IUi∈T. 3. IfUi∈T,i∈{1;:::;n},then⋂i∈{1;:::;n}Ui∈T. (X;T)iscalledatopologicalspace(sometimeswewillonlywriteX). U ⊆X iscalledopen,ifU ∈T. U ⊆X iscalledclosed,ifX/U ∈T. Example1.2 1. X someset. • Td={U ∣U ⊆X}discretetopology. • Tt={∅;X}trivialtopology. 2. X ={x ;x ;x }.enthethreecollections 1 2 3 • {∅;X} • {∅;{x };{x ;x };X} 1 1 2 • {∅;{x };{x ;x };{x ;x };X} 2 1 2 2 3 aretopologiesonX. 3. X isaset.enthecollections • Tf ={U ⊆X ∣X/U is(cid:277)niteorX/U =X}(cid:277)nitetopology. • Tc={U ⊆X ∣X/U iscountableorX/U =X}countabletopology. aretopologiesonX.[Homework] 4 1.1Topologicalspacesandcontinuousfunctions De(cid:277)nition1.3 SupposethatT andT′aretopologiesonX.IfT′⊇T,thenT′iscalled (cid:277)nerthanT. IfT′ ⊋ T,thenT′ iscalledstrictly(cid:277)nerthanT. IfT′ ⊇ T orT ⊇ T′, thenT andT′arecomparable. De(cid:277)nition1.4 Let(X;T)beatopologicalspaceandA⊆X. einteriorofAis intA∶= ⋃ U. U∈T;U⊆A eclosureofAis A∶= ⋂ U. X/U∈T;A⊆U Basisforatopology De(cid:277)nition1.5 AbasisBforatopologicalspace(X;T)isacollectionBofopensub- setesX (i.e.B⊆T),suchthat∀U ∈T ∃{Bi}i∈I,Bi∈B,∀i∈I,withU =⋃i∈IBi. Remark1.6 Abasisisnotunique. Properties:Bbasisfor(X;T)thenBhasthefollowingproperties 1. ∀x∈X ∃B∈Bwithx∈B. P X ∈ T andBisabasis(cid:212)⇒X = ⋃i∈IBi,Bi ∈ B,i ∈ I. Sox ∈ Bj for somej ∈I. 2. Ifx∈B ∩B ,B ;B ∈Bthen∃B ∈Bsuchthatx∈B ⊆B ∩B . 1 2 1 2 3 3 1 2 P B ;B ∈ B ⊆ T (cid:212)⇒B ;B ∈ T (cid:212)⇒B ∩B ∈ T (cid:212)⇒B ∩B = 1 2 1 2 1 2 1 2 ⋃i∈IBi,… Conversely: IfacollectionBofsubsetsofX satis(cid:277)esproperties1. and2. thenthereisa uniquetopologyT forwhichBisabasis. T iscalledthetopologygeneratedbyBanditconsistsofallunionsofelementsofB. P WeprovethatT isatopology 1. X ∈T? Property1(cid:212)⇒ifx∈Xthen∃Bx∈Bwithx∈Bx⊆X.ereforeX =⋃x∈XBx, i.e.X ∈T. ∅∈T? ∅istheemptyunionofelementsinB,so∅∈T. 2. IfUi∈T ∀i∈I,does⋃i∈IUi∈T? Ui∈T (cid:212)⇒Ui=⋃j<inJBij.So⋃i∈IUi=⋃i∈I⋃j∈JBij ∈T. 3. IfUi∈T fori∈{1;:::;n},is⋂i∈{1;:::;n}Ui∈T? WewillshowthatifU ;U ∈T thenU ∩U ∈T. 1 2 1 2 U1=⋃(cid:21)∈(cid:3)B(cid:21),U2=Uk∈KBk.Considerx∈U1∩U2.enx∈B(cid:21)xandx∈Bkx, forsome(cid:21) ∈(cid:3)andk ∈K. usx∈B ∩B (cid:212)⇒[byproperty2.] ∃B ∈B x x (cid:21)x kx x withx∈B ⊆B ∩B ⊆U ∩U . x (cid:21)x kx 1 2 ereforeU1∩U2=⋃x∈U1∩U2Bx∈T. 5 Topology Example1.10 1. X =R,B ={(a;b)∣a;b∈R; a<b}. Bsatis(cid:277)esproperites1. and2. thereforeit generatesatopologyonR.isisthestandardtopologyonR. 2. X =R,B={(a;b)∣a;b∈Q; a<b} Bsatis(cid:277)esproperties1.and2. Claim[Homework]:etopologyT generatedbyBisinfactthestandardtopol- ogyonR. Lemma1.11 LetB;B′ bebasesforthetopologiesT andT′ onX. enthefollowing statementsareequivalent: 1. T′⊇T. 2. ∀x∈X,∀B∈Bwithx∈BthereisB′∈B′suchthatx∈B′⊆B. P 1.⇒2. Considerx ∈ X andB ∈ B withx ∈ B. B ∈ T ⊆ T′ (cid:212)⇒B ∈ T′ (cid:212)⇒B = ⋃(cid:21)∈(cid:3)B(cid:21)′,B(cid:21)′ ∈B′. Sox ∈ B,thereforex ∈ B′,forsome(cid:21) ∈ (cid:3). i.e. wehaveB′ ∈ B′,suchthat x∈B′ ⊆B. (cid:21) x (cid:21)x (cid:21)x 2.⇒1. Csoomnesi(cid:21)der∈U(cid:3)∈.2T.iamndplxies∈tUha.ttheernexex∈isUts=B⋃′ (cid:21)∈∈(cid:3)BB′(cid:21)su,cBh(cid:21)th∈aBtx. ∈Bat′isx⊆B∈B(cid:21).x,for (cid:212)⇒enUUx∈⊆T⋃′.x∈UeBre(cid:21)′fxor⊆eUT (cid:212)⊆⇒T′U. =⋃x∈UB(cid:21)(cid:21)′xx (cid:21)x (cid:21)x Producttopology Let (X;Tx), (Y;TY) be two topological spaces. e producttopology is the topology withbasisthecollectionB={U ×V ∣U ∈T ; V ∈T }. X Y Metrictopology X isaset. De(cid:277)nition1.13 Ametriconthissetisafunctiond∶X×X →Rwith 1. d(x;y)≥0,andd(x;y)=0iffx=y. 2. d(x;z)≤d(x;y)+d(y;z)∀x;y;z∈X. 3. d(x;y)=d(y;x),∀x;y∈X. WecallthesetBd(x;")={y∈X ∣d(y;x)<"}the"-ballcenteredatx. {Bd(x;")}x∈X;">0isabasisforatopologyonX,themetrictopology. 6 1.1Topologicalspacesandcontinuousfunctions Example1.14 Rwiththestandardtopology(Tstand). ConsiderR×R=R2. Claim:eproducttopologyonR2andthemetrictopologyarethesame. Forthis,onehastoshow • T ⊆T pr m Bylemma1.11onehastoshow∀x ∈ R2,∀B ∈ B ,x ∈ B ,∃B ∈ B such pr pr pr m m thatx∈B ⊆B . m pr • T ⊆T m pr … Subspacetopology De(cid:277)nition1.15 (X;T)isatopologicalspaceandY ⊆X. ecollectionTY ∶={U ∩ Y ∣U ∈T}isatopologyonY,calledthesubspacetopology. Example1.16 Y =[0;1]∪{2}⊆X =Rwiththestandardtopology. enthesets • (a;b),witha;b∈[0;1], • [0;b),withb∈[0;1], • (a;1],witha∈[0;1], • {2}, • [0;1] areopensetsinthesubspaceY. 1.1.2. Continuousfunctions De(cid:277)nition1.17 Let (X;TX), (Y;TY) be topological spaces and f ∶ X → Y. f is calledcontinuousiff−1(V)∈TX ∀V ∈TY. Claimf ∶R→R(withstandardtopology).e"–(cid:14)de(cid:277)nitionofcontinuityisequivalent tothede(cid:277)nitionabove. P “⇐” Supposethatf ∶R→Riscontinuouswiththede(cid:277)nitionabove. Consider x ∈ R and " > 0. en V = (f(x )−";f(x )+") ∈ T , so 0 0 0 stand f−1(V)∈T byourde(cid:277)nition. stand Nowx ∈f−1(V),sothereexists(a;b)∈B withx ∈(a;b)⊆f−1(V). 0 stand 0 Take(cid:14) =min{x −a;b−x }. Clearly(cid:14) >0. en∣x−x ∣<(cid:14)(cid:212)⇒x∈(a;b)⊆ 0 0 0 f−1(V)(cid:212)⇒f(x)∈V (cid:212)⇒f(x)∈(f(x)−";f(x)+")(cid:212)⇒∣f(x)−f(x )∣<". 0 7 Topology eorem1.19 LetX;Y betopologicalspacesandf ∶X →Y. efollowingareequiva- lent 1. f iscontinuous. 2. foreveryclosedsubsetof Y theinverseimageofitisaclosedsubsetofX. P 1.⇒2. Let B be closed in Y, then X/f−1(B) = f−1(Y/B) which is open in X, i.e. f−1(B)isclosedinX. 2.⇒1. … Lemma1.21 (thepastinglemma) Let X;Y be topological spaces and A;B closed subsets of X with X = A∪B. Let f ∶A→Y,g ∶B →Y becontinuouswithf(x)=g(x)∀x∈A∩B. enh∶X →Y with f(x) x∈A h(x)={ g(x) x∈B iscontinuous. P LetCbeaclosedsubsetofY.enh−1(C)=f−1(C)∪g−1(C)wheref−1(C) isclosedinAandg−1(C)isclosedinB. (a) f−1(C)isclosedinA(cid:212)⇒f−1(C)=A∩G,whereGclosedinX. (b) g−1(C)isclosedinB(cid:212)⇒g−1(C)=B∩H,whereH closedinX. (a)(cid:212)⇒f−1(C)isclosedinX, (b)(cid:212)⇒g−1(C)isclosedinX. (cid:212)⇒h−1(C)=f−1(C)∪g−1(C)isclosedinX. De(cid:277)nition1.23 LetX;Y betopologicalspaces.f ∶X →Y iscalledahomeomorphism iff isbijective,andf;f−1arecontinuous. BijectivecorrespondencenotonlybetweenX andY butalsobetweenthecollectionof opensetsinX andthecollectionofopensetsY. us any property of X that is expressed in terms of its open subsets yields via f the correspondingpropertiesforY.Suchapropertyiscalledatopologicalproperty. Quotienttopology Example1.24 Torus De(cid:277)nition1.25 LetX;Y betopologicalspaces,p∶X →Y asurjectivemap.emap piscalledaquotientmapifasubsetU ofY isopeninY,ifandonlyifp−1(U)isopen inX. 8 1.2Conectedness&Compactness De(cid:277)nition1.26 LetXbeatopologicalspace,Y besomesetandp∶X →Y asurjective map.equotienttopologyonY inducedbypisde(cid:277)nedasfollows: AsubsetU ⊆Y isopenifandonlyifp−1(U)⊆X isopen. efactthatthisisatopologyfollowsfromp−1(∅)=∅,p−1(Y)=X,p−1(⋃a∈JUa)= ⋃a∈Jp−1(Ua),p−1(⋂ni=1Ui)=⋂ni=1p−1(Ui). Remark1.27 equotienttopologyonY isthe(cid:277)nesttopologythatmakespcontinuous. Example1.28 1. X = {(x;y) ∈ R2 ∣ 0 ≤ x ≤ 2(cid:25); 0 ≤ y ≤ 1} = [0;2(cid:25)]×[0;1] ⊆ R2. Y = {(x;y;z)∈R3∣x2+y2=1; 0≤z≤1}. f ∶X →Y,with(x;y)↦(cosx;sinx;y). f issurjective.Usingf wecande(cid:277)nethequotienttopologyinY. 2. p∶R→{x ;x ;c } 1 2 3 ⎧ ⎪⎪⎪ x1 x>0 p(x)=⎨ x x<0 ⎪⎪⎪⎩ x23 x=0 equotienttopologyon{x ;x ;x }inducedbypis{∅;{x };{x };{x ;x };{x ;x ;x }} 1 2 3 1 2 1 2 1 2 3 1.2. Conectedness&Compactness Incalculusyouhavestudiesfunctionsf ∶[a;b]→Randyouhaveprovedthreetheorems forcontinuousfunctionsf ∶[a;b]→R. 1. IntermediateValueeorem(IVT), 2. MaximusValueeorem(MVT), 3. UniformContinuityeorem(UCT). esetheoremsrelyonthecontinuityoff andsometopologicalpropertiesof[a;b] ⊂ R. InparticularIVTreliesontheconnectednessof[a;b]. MVTandVCTrelyonthe compactnessof[a;b]. 1.2.1. Connectedspaces De(cid:277)nition1.29 Consider(X;T)topologicalspace. AseparationofX isapairU;V whereU;V ∈T,U;V ≠∅,U ∩V =∅,andX =U ∪V. X iscalledconnectedifthere isnoseparationofX. Remark1.30 Connectednessisatopologicalproperty. Example1.31 1. R,T , stand Q=((−∞;a)∩Q)∪((a;∞)∩Q),a∈R∖Q. 2. R,[a;b],[a;b),(a;b],(a;b)areconnected. 9 Topology Claim:XisconnectedifftheonlysubsetsofXthatarebothopenandclosedare∅and X. P “⇒” Suppose, thatA ⊆ X, A ≠ ∅, A ≠ X, andA ∈ T , X ∖A ∈ T . enX = X X A∪(X∖A)(cid:212)⇒A;X∖AisseparationofX,contradiction. “⇐” IfU;V isaseparationofX. enU ∈ T , X ∖U = V ∈ T , U;X ∖U ≠ ∅, X x U ∩(X∖U)=∅.V ∈T ,X∖U ∈T ,U ≠∅,U ≠X,contradiction. X X ereforeX isconnected. Lemma1.33 IfC;D areaseparationofX andY isaconnectedsubspaceofX, then Y ⊆CorY ⊆D. P C∩Y,D∩Y areopensubsetsofY. Inaddition(C∩Y)∩(D∩Y) = ∅. If C∩Y andD∩Y werebothnonempty,thentheywouldformaseparationofY.ButY isconnected.SoC∩D=∅,orD∩Y =∅. (cid:212)⇒Y ⊆CorY ⊆D. eorem1.35 Let{Ai}i∈I beconnectedsubspacesofX andp∈∩i∈IAi. en∪i∈IAiis connectedsubspaceofX. P AssumethatUi∈IAi isnotconnected,and∪i∈IAi = C∪D,C;Daseparation of∪i∈IAi. enp ∈ C ∪DandWLOGwecanassumethatp ∈ C. Ai isaconnected subspace. (cid:212)⇒[Lemma]Ai⊆CorAi⊆Dforanyi∈I.p∈∩i∈IAi. (cid:212)⇒p∈A ∀i∈I. i (cid:212)⇒A ⊆C∀i∈I. i (cid:212)⇒∪i∈IAi⊆C. (cid:212)⇒D=∅.Contradiction. eorem1.37 Let A be a connected subspace of X and A ⊆ B ⊆ A. en B is also connected. P AssumethatC;D isaseparationofB. ByLemmaA ⊆ C orA ⊆ D. WLOG A⊆C. A⊆C(cid:212)⇒A⊆C. D⊆B⊆A⊆C(cid:212)⇒D⊆C. Claim:D∩C =∅. Proof: eclosureofC inBisC∩B,whereC istheclosureofC inX. C =C∩B = C∩(C∪D)=(C∩C)∪(C∩D)=C∪(C∩D). (cid:212)⇒C∩D=∅. WehavethatD⊆CandweshowedthatD∩C =∅.ereforeD=∅,contradiction. ereisnoseparationofB,i.e.Bisconnected. eorem1.39 Letf ∶X →Y beacontinuousfunctionbetweentopologicalspacesXand Y.IfXisconnected,thenf(X)isconnected. 10

Description:
Massey: Algebraic Topology: An Introduction. • Stöcker, Zieschang: Algebraische Topologie. • Lickorish: An introduction to knot theory. Introduction.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.