Introduction to Algebraic Topology MitschriderVorlesungvon Dr.M.Michalogiorgaki TobiasBerner UniversitätZürich Frühjahrssemester2009 Contents 1 Topology 4 1.1 Topologicalspacesandcontinuousfunctions. . . . . . . . . . . . . . . . . 4 1.1.1 Topologicalspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Continuousfunctions . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Conectedness&Compactness . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Connectedspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Algebraictopology 16 2.1 Fundamentalgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1 Pathhomotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 efundamentalgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Coveringspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Liingproperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 efundamentalgroupofthecircleandapplications . . . . . . . . . . . . 27 2.5.1 eFundamentaleoremofAlgebra . . . . . . . . . . . . . . . . 28 2.5.2 Deformationretractsandhomotopytype . . . . . . . . . . . . . . 29 2.6 SeifertvonKampeneorem. . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.1 Directsumsofabeliangroups . . . . . . . . . . . . . . . . . . . . . 35 2.7 Freeabeliangroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.8 Freeproductsofgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.8.1 Freegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8.2 eSeifert-vanKampentheorem. . . . . . . . . . . . . . . . . . . 43 2.9 CWcomplexes(cellcomplexes) . . . . . . . . . . . . . . . . . . . . . . . . 47 2.10 Surfaces(two-dimensionalmanifolds) . . . . . . . . . . . . . . . . . . . . 49 2.10.1 Fundamentalgroupofsurfaces . . . . . . . . . . . . . . . . . . . . 49 2.10.2 Homologyofsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.10.3 Classi(cid:277)cationofsurfaces . . . . . . . . . . . . . . . . . . . . . . . . 51 2.11 Knottheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.12 Classi(cid:277)cationofcoveringspaces . . . . . . . . . . . . . . . . . . . . . . . . 58 Index 66 2 CONTENTS Literature • Muncres:Topology2ndedition • Jänich:Topologie • Massey:AlgebraicTopology:AnIntroduction • Stöcker,Zieschang:AlgebraischeTopologie • Lickorish:Anintroductiontoknottheory Introduction Incalculus,youhavestudiedRn,n∈N,aswellasfunctionsf ∶Rk →Rℓ,k;ℓ∈N. You havestudiednotionssuchasneighbourhoodofapointx∈Rn,aswellasconvergenceand continuityofafunctionf atapointx∈Rk. Forthisstudy,youhaveusedtheEuclidean metric. Forinstanceiff ∶R→R,wesaythatf iscontinuousatx∈Rif∀">0∃(cid:14)>0suchthat if∣x−x ∣<(cid:14)then∣f(x)−f(x )∣<". 0 0 Weusedthemetricd∶R×R→R,with(x;y)↦∣x−√y∣.IngeneraltheEuclideanmetric d∶Rn×Rn→Rwith(x1;:::;xn);(y1;:::;yn)↦ ∑ni=1(xi−yi)2. Intopology, westudynotionssuchasneighbourhoodofapointx ∈ X, convergence, continuityforageneralsetX.Forthisstudyametricisnotnecessary.Whatwewilluse isopensetsinX. Inalgebraictopology,weuseabstractalgebratostudytopologicalproperties. 3 1 Topology 1.1. Topologicalspacesandcontinuousfunctions 1.1.1. Topologicalspaces ConsiderasetX andP(X)∶={U ∣U ⊆X}. De(cid:277)nition1.1 AtopologyonX isacollectionT ⊂P(X)suchthat 1. ∅;X ∈T. 2. IfUi∈T ∀i∈I,then⋃i∈IUi∈T. 3. IfUi∈T,i∈{1;:::;n},then⋂i∈{1;:::;n}Ui∈T. (X;T)iscalledatopologicalspace(sometimeswewillonlywriteX). U ⊆X iscalledopen,ifU ∈T. U ⊆X iscalledclosed,ifX/U ∈T. Example1.2 1. X someset. • Td={U ∣U ⊆X}discretetopology. • Tt={∅;X}trivialtopology. 2. X ={x ;x ;x }.enthethreecollections 1 2 3 • {∅;X} • {∅;{x };{x ;x };X} 1 1 2 • {∅;{x };{x ;x };{x ;x };X} 2 1 2 2 3 aretopologiesonX. 3. X isaset.enthecollections • Tf ={U ⊆X ∣X/U is(cid:277)niteorX/U =X}(cid:277)nitetopology. • Tc={U ⊆X ∣X/U iscountableorX/U =X}countabletopology. aretopologiesonX.[Homework] 4 1.1Topologicalspacesandcontinuousfunctions De(cid:277)nition1.3 SupposethatT andT′aretopologiesonX.IfT′⊇T,thenT′iscalled (cid:277)nerthanT. IfT′ ⊋ T,thenT′ iscalledstrictly(cid:277)nerthanT. IfT′ ⊇ T orT ⊇ T′, thenT andT′arecomparable. De(cid:277)nition1.4 Let(X;T)beatopologicalspaceandA⊆X. einteriorofAis intA∶= ⋃ U. U∈T;U⊆A eclosureofAis A∶= ⋂ U. X/U∈T;A⊆U Basisforatopology De(cid:277)nition1.5 AbasisBforatopologicalspace(X;T)isacollectionBofopensub- setesX (i.e.B⊆T),suchthat∀U ∈T ∃{Bi}i∈I,Bi∈B,∀i∈I,withU =⋃i∈IBi. Remark1.6 Abasisisnotunique. Properties:Bbasisfor(X;T)thenBhasthefollowingproperties 1. ∀x∈X ∃B∈Bwithx∈B. P X ∈ T andBisabasis(cid:212)⇒X = ⋃i∈IBi,Bi ∈ B,i ∈ I. Sox ∈ Bj for somej ∈I. 2. Ifx∈B ∩B ,B ;B ∈Bthen∃B ∈Bsuchthatx∈B ⊆B ∩B . 1 2 1 2 3 3 1 2 P B ;B ∈ B ⊆ T (cid:212)⇒B ;B ∈ T (cid:212)⇒B ∩B ∈ T (cid:212)⇒B ∩B = 1 2 1 2 1 2 1 2 ⋃i∈IBi,… Conversely: IfacollectionBofsubsetsofX satis(cid:277)esproperties1. and2. thenthereisa uniquetopologyT forwhichBisabasis. T iscalledthetopologygeneratedbyBanditconsistsofallunionsofelementsofB. P WeprovethatT isatopology 1. X ∈T? Property1(cid:212)⇒ifx∈Xthen∃Bx∈Bwithx∈Bx⊆X.ereforeX =⋃x∈XBx, i.e.X ∈T. ∅∈T? ∅istheemptyunionofelementsinB,so∅∈T. 2. IfUi∈T ∀i∈I,does⋃i∈IUi∈T? Ui∈T (cid:212)⇒Ui=⋃j<inJBij.So⋃i∈IUi=⋃i∈I⋃j∈JBij ∈T. 3. IfUi∈T fori∈{1;:::;n},is⋂i∈{1;:::;n}Ui∈T? WewillshowthatifU ;U ∈T thenU ∩U ∈T. 1 2 1 2 U1=⋃(cid:21)∈(cid:3)B(cid:21),U2=Uk∈KBk.Considerx∈U1∩U2.enx∈B(cid:21)xandx∈Bkx, forsome(cid:21) ∈(cid:3)andk ∈K. usx∈B ∩B (cid:212)⇒[byproperty2.] ∃B ∈B x x (cid:21)x kx x withx∈B ⊆B ∩B ⊆U ∩U . x (cid:21)x kx 1 2 ereforeU1∩U2=⋃x∈U1∩U2Bx∈T. 5 Topology Example1.10 1. X =R,B ={(a;b)∣a;b∈R; a<b}. Bsatis(cid:277)esproperites1. and2. thereforeit generatesatopologyonR.isisthestandardtopologyonR. 2. X =R,B={(a;b)∣a;b∈Q; a<b} Bsatis(cid:277)esproperties1.and2. Claim[Homework]:etopologyT generatedbyBisinfactthestandardtopol- ogyonR. Lemma1.11 LetB;B′ bebasesforthetopologiesT andT′ onX. enthefollowing statementsareequivalent: 1. T′⊇T. 2. ∀x∈X,∀B∈Bwithx∈BthereisB′∈B′suchthatx∈B′⊆B. P 1.⇒2. Considerx ∈ X andB ∈ B withx ∈ B. B ∈ T ⊆ T′ (cid:212)⇒B ∈ T′ (cid:212)⇒B = ⋃(cid:21)∈(cid:3)B(cid:21)′,B(cid:21)′ ∈B′. Sox ∈ B,thereforex ∈ B′,forsome(cid:21) ∈ (cid:3). i.e. wehaveB′ ∈ B′,suchthat x∈B′ ⊆B. (cid:21) x (cid:21)x (cid:21)x 2.⇒1. Csoomnesi(cid:21)der∈U(cid:3)∈.2T.iamndplxies∈tUha.ttheernexex∈isUts=B⋃′ (cid:21)∈∈(cid:3)BB′(cid:21)su,cBh(cid:21)th∈aBtx. ∈Bat′isx⊆B∈B(cid:21).x,for (cid:212)⇒enUUx∈⊆T⋃′.x∈UeBre(cid:21)′fxor⊆eUT (cid:212)⊆⇒T′U. =⋃x∈UB(cid:21)(cid:21)′xx (cid:21)x (cid:21)x Producttopology Let (X;Tx), (Y;TY) be two topological spaces. e producttopology is the topology withbasisthecollectionB={U ×V ∣U ∈T ; V ∈T }. X Y Metrictopology X isaset. De(cid:277)nition1.13 Ametriconthissetisafunctiond∶X×X →Rwith 1. d(x;y)≥0,andd(x;y)=0iffx=y. 2. d(x;z)≤d(x;y)+d(y;z)∀x;y;z∈X. 3. d(x;y)=d(y;x),∀x;y∈X. WecallthesetBd(x;")={y∈X ∣d(y;x)<"}the"-ballcenteredatx. {Bd(x;")}x∈X;">0isabasisforatopologyonX,themetrictopology. 6 1.1Topologicalspacesandcontinuousfunctions Example1.14 Rwiththestandardtopology(Tstand). ConsiderR×R=R2. Claim:eproducttopologyonR2andthemetrictopologyarethesame. Forthis,onehastoshow • T ⊆T pr m Bylemma1.11onehastoshow∀x ∈ R2,∀B ∈ B ,x ∈ B ,∃B ∈ B such pr pr pr m m thatx∈B ⊆B . m pr • T ⊆T m pr … Subspacetopology De(cid:277)nition1.15 (X;T)isatopologicalspaceandY ⊆X. ecollectionTY ∶={U ∩ Y ∣U ∈T}isatopologyonY,calledthesubspacetopology. Example1.16 Y =[0;1]∪{2}⊆X =Rwiththestandardtopology. enthesets • (a;b),witha;b∈[0;1], • [0;b),withb∈[0;1], • (a;1],witha∈[0;1], • {2}, • [0;1] areopensetsinthesubspaceY. 1.1.2. Continuousfunctions De(cid:277)nition1.17 Let (X;TX), (Y;TY) be topological spaces and f ∶ X → Y. f is calledcontinuousiff−1(V)∈TX ∀V ∈TY. Claimf ∶R→R(withstandardtopology).e"–(cid:14)de(cid:277)nitionofcontinuityisequivalent tothede(cid:277)nitionabove. P “⇐” Supposethatf ∶R→Riscontinuouswiththede(cid:277)nitionabove. Consider x ∈ R and " > 0. en V = (f(x )−";f(x )+") ∈ T , so 0 0 0 stand f−1(V)∈T byourde(cid:277)nition. stand Nowx ∈f−1(V),sothereexists(a;b)∈B withx ∈(a;b)⊆f−1(V). 0 stand 0 Take(cid:14) =min{x −a;b−x }. Clearly(cid:14) >0. en∣x−x ∣<(cid:14)(cid:212)⇒x∈(a;b)⊆ 0 0 0 f−1(V)(cid:212)⇒f(x)∈V (cid:212)⇒f(x)∈(f(x)−";f(x)+")(cid:212)⇒∣f(x)−f(x )∣<". 0 7 Topology eorem1.19 LetX;Y betopologicalspacesandf ∶X →Y. efollowingareequiva- lent 1. f iscontinuous. 2. foreveryclosedsubsetof Y theinverseimageofitisaclosedsubsetofX. P 1.⇒2. Let B be closed in Y, then X/f−1(B) = f−1(Y/B) which is open in X, i.e. f−1(B)isclosedinX. 2.⇒1. … Lemma1.21 (thepastinglemma) Let X;Y be topological spaces and A;B closed subsets of X with X = A∪B. Let f ∶A→Y,g ∶B →Y becontinuouswithf(x)=g(x)∀x∈A∩B. enh∶X →Y with f(x) x∈A h(x)={ g(x) x∈B iscontinuous. P LetCbeaclosedsubsetofY.enh−1(C)=f−1(C)∪g−1(C)wheref−1(C) isclosedinAandg−1(C)isclosedinB. (a) f−1(C)isclosedinA(cid:212)⇒f−1(C)=A∩G,whereGclosedinX. (b) g−1(C)isclosedinB(cid:212)⇒g−1(C)=B∩H,whereH closedinX. (a)(cid:212)⇒f−1(C)isclosedinX, (b)(cid:212)⇒g−1(C)isclosedinX. (cid:212)⇒h−1(C)=f−1(C)∪g−1(C)isclosedinX. De(cid:277)nition1.23 LetX;Y betopologicalspaces.f ∶X →Y iscalledahomeomorphism iff isbijective,andf;f−1arecontinuous. BijectivecorrespondencenotonlybetweenX andY butalsobetweenthecollectionof opensetsinX andthecollectionofopensetsY. us any property of X that is expressed in terms of its open subsets yields via f the correspondingpropertiesforY.Suchapropertyiscalledatopologicalproperty. Quotienttopology Example1.24 Torus De(cid:277)nition1.25 LetX;Y betopologicalspaces,p∶X →Y asurjectivemap.emap piscalledaquotientmapifasubsetU ofY isopeninY,ifandonlyifp−1(U)isopen inX. 8 1.2Conectedness&Compactness De(cid:277)nition1.26 LetXbeatopologicalspace,Y besomesetandp∶X →Y asurjective map.equotienttopologyonY inducedbypisde(cid:277)nedasfollows: AsubsetU ⊆Y isopenifandonlyifp−1(U)⊆X isopen. efactthatthisisatopologyfollowsfromp−1(∅)=∅,p−1(Y)=X,p−1(⋃a∈JUa)= ⋃a∈Jp−1(Ua),p−1(⋂ni=1Ui)=⋂ni=1p−1(Ui). Remark1.27 equotienttopologyonY isthe(cid:277)nesttopologythatmakespcontinuous. Example1.28 1. X = {(x;y) ∈ R2 ∣ 0 ≤ x ≤ 2(cid:25); 0 ≤ y ≤ 1} = [0;2(cid:25)]×[0;1] ⊆ R2. Y = {(x;y;z)∈R3∣x2+y2=1; 0≤z≤1}. f ∶X →Y,with(x;y)↦(cosx;sinx;y). f issurjective.Usingf wecande(cid:277)nethequotienttopologyinY. 2. p∶R→{x ;x ;c } 1 2 3 ⎧ ⎪⎪⎪ x1 x>0 p(x)=⎨ x x<0 ⎪⎪⎪⎩ x23 x=0 equotienttopologyon{x ;x ;x }inducedbypis{∅;{x };{x };{x ;x };{x ;x ;x }} 1 2 3 1 2 1 2 1 2 3 1.2. Conectedness&Compactness Incalculusyouhavestudiesfunctionsf ∶[a;b]→Randyouhaveprovedthreetheorems forcontinuousfunctionsf ∶[a;b]→R. 1. IntermediateValueeorem(IVT), 2. MaximusValueeorem(MVT), 3. UniformContinuityeorem(UCT). esetheoremsrelyonthecontinuityoff andsometopologicalpropertiesof[a;b] ⊂ R. InparticularIVTreliesontheconnectednessof[a;b]. MVTandVCTrelyonthe compactnessof[a;b]. 1.2.1. Connectedspaces De(cid:277)nition1.29 Consider(X;T)topologicalspace. AseparationofX isapairU;V whereU;V ∈T,U;V ≠∅,U ∩V =∅,andX =U ∪V. X iscalledconnectedifthere isnoseparationofX. Remark1.30 Connectednessisatopologicalproperty. Example1.31 1. R,T , stand Q=((−∞;a)∩Q)∪((a;∞)∩Q),a∈R∖Q. 2. R,[a;b],[a;b),(a;b],(a;b)areconnected. 9 Topology Claim:XisconnectedifftheonlysubsetsofXthatarebothopenandclosedare∅and X. P “⇒” Suppose, thatA ⊆ X, A ≠ ∅, A ≠ X, andA ∈ T , X ∖A ∈ T . enX = X X A∪(X∖A)(cid:212)⇒A;X∖AisseparationofX,contradiction. “⇐” IfU;V isaseparationofX. enU ∈ T , X ∖U = V ∈ T , U;X ∖U ≠ ∅, X x U ∩(X∖U)=∅.V ∈T ,X∖U ∈T ,U ≠∅,U ≠X,contradiction. X X ereforeX isconnected. Lemma1.33 IfC;D areaseparationofX andY isaconnectedsubspaceofX, then Y ⊆CorY ⊆D. P C∩Y,D∩Y areopensubsetsofY. Inaddition(C∩Y)∩(D∩Y) = ∅. If C∩Y andD∩Y werebothnonempty,thentheywouldformaseparationofY.ButY isconnected.SoC∩D=∅,orD∩Y =∅. (cid:212)⇒Y ⊆CorY ⊆D. eorem1.35 Let{Ai}i∈I beconnectedsubspacesofX andp∈∩i∈IAi. en∪i∈IAiis connectedsubspaceofX. P AssumethatUi∈IAi isnotconnected,and∪i∈IAi = C∪D,C;Daseparation of∪i∈IAi. enp ∈ C ∪DandWLOGwecanassumethatp ∈ C. Ai isaconnected subspace. (cid:212)⇒[Lemma]Ai⊆CorAi⊆Dforanyi∈I.p∈∩i∈IAi. (cid:212)⇒p∈A ∀i∈I. i (cid:212)⇒A ⊆C∀i∈I. i (cid:212)⇒∪i∈IAi⊆C. (cid:212)⇒D=∅.Contradiction. eorem1.37 Let A be a connected subspace of X and A ⊆ B ⊆ A. en B is also connected. P AssumethatC;D isaseparationofB. ByLemmaA ⊆ C orA ⊆ D. WLOG A⊆C. A⊆C(cid:212)⇒A⊆C. D⊆B⊆A⊆C(cid:212)⇒D⊆C. Claim:D∩C =∅. Proof: eclosureofC inBisC∩B,whereC istheclosureofC inX. C =C∩B = C∩(C∪D)=(C∩C)∪(C∩D)=C∪(C∩D). (cid:212)⇒C∩D=∅. WehavethatD⊆CandweshowedthatD∩C =∅.ereforeD=∅,contradiction. ereisnoseparationofB,i.e.Bisconnected. eorem1.39 Letf ∶X →Y beacontinuousfunctionbetweentopologicalspacesXand Y.IfXisconnected,thenf(X)isconnected. 10
Description: