Introduction to Algebraic Geometry and Commutative Algebra 7725 tp.indd 1 4/15/10 2:33:41 PM TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk IISc Lecture Notes Series Introduction to Algebraic Geometry and Commutative Algebra Dilip P Patil Indian Institute of Science, India Uwe Storch Ruhr University, Germany World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI 7725 tp.indd 2 4/15/10 2:33:42 PM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. IISc Lecture Notes Series INTRODUCTION TO ALGEBRAIC GEOMETRY AND COMMUTATIVE ALGEBRA Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-4304-56-6 ISBN-10 981-4304-56-5 Printed in Singapore. YeeSern - Intro to Algebraic Geometry.pmd 1 2/11/2010, 10:03 AM SERIESPREFACE World Scientific Publishing Company - Indian Institute of Science Collaboration IIScPressandWSPCareco-publishingbooksauthoredbyworldrenownedscien- tistsandengineers. Thiscollaboration,startedin2008duringIISc’scentenaryyear under a Memorandum of Understanding between IISc and WSPC, has resulted intheestablishmentofthreeSeries: IIScCentenaryLecturesSeries(ICLS),IISc ResearchMonographsSeries(IRMS),andIIScLectureNotesSeries(ILNS). Thispioneeringcollaborationwillcontributesignificantlyindisseminatingcurrent Indianscientificadvancementworldwide. The"IIScCentenaryLecturesSeries"willcompriselecturesbydesignatedCen- tenaryLecturers-eminentteachersandresearchersfromallovertheworld. The "IISc Research Monographs Series" will comprise state-of-the-art mono- graphs written by experts in specific areas. They will include, but not limited to, theauthors’ownresearchwork. The "IISc Lecture Notes Series" will consist of books that are reasonably self- containedandcanbeusedeitherastextbooksorforself-studyatthepostgraduate levelinscienceandengineering. Thebookswillbebasedonmaterialthathasbeen class-testedformostpart. EditorialBoardfortheIIScLectureNotesSeries(ILNS): GadadharMisra,Editor-in-Chief([email protected]) [email protected] [email protected] [email protected] [email protected] [email protected] TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk PREFACE Thepresentbookisbasedonacourseoflecturesdeliveredbythesecondauthorat theDepartmentofMathematics,IndianInstituteofScience,Bangaloreduringseven weeksinFebruary/March1998. Thecoursemetfourhoursweeklywithtutorials of two hours in addition. The arrangement of chapters follows quite closely the sequenceoftheselecturesandeachchaptercontainsmoreorlessthesubject-matter of one week. In addition to the exercises covered in the tutorial sessions, further exercisesareaddedattheappropriateplacestoenhancetheunderstandingandto provide examples. We recommend to look at them while studying the text. To those exercises which are used at other places sufficient hints for straightforward solutionsaregiven. Chapter7isanexpandedversionofthelecturesgiveninthelast week(andwouldatleastneedtwoweekstodeliver). Thelecturenotes[12]based onaseriesoflecturesin1971/72andwrittenbyDr. MichaelLippaconstitutedan importantmodel. TheobjectiveofthelectureswastointroduceAlgebraicGeometryandCommutative Algebra simultaneously and to show their interplay. This aspect was developed systematically and in full generality with all its consequences in the work ofA. Grothendieck, cf.[4]. In CommutativeAlgebra we do not introduce and use the conceptofcompletion. Ingeometrywestartthelanguageofsheavesandschemes from scratch, but we avoid sheaf cohomology completely. The Riemann–Roch theoremisformulatedforarbitrarycoherentsheavesonarbitraryprojectivecurves overanarbitraryfield. Itsproofwereducetothecaseoftheprojectiveline. Instead of(first)cohomologyitusesthedualizingsheaf. Sincetheuniquenessofthissheaf isnotsoimportantfortheunderstandingoftheRiemann–Rochtheorem,itsproof which uses some homological algebra is postponed to the end. We have added a lot of illustrative examples and related concepts to draw many consequences, especiallyaboutthegenusofaprojectivecurve. We start with basic Commutative Algebra and emphasize on normalization. As geometric counterpart we then introduce the K-spectrum of a finitely generated algebra over a field K. We extend these concepts to prime spectra of arbitrary commutative rings and develop the dimension theory for arbitrary commutative Noetherianringsandtheirspectra. Afterintroducingthelanguageofsheaveswe developthetheoryofschemes, inparticular, projectiveschemes. Themaintheo- remofeliminationandthemappingtheoremofChevalleyareproved. Regularity, normalityandsmoothnessarediscussedindetailincludingthetheoryofKa¨hlerdif- ferentials. Wegiveaself-containedtreatmentofthemoduleofKa¨hlerdifferentials andusethesheafofKa¨hlerdifferentialsasafundamentalexampleofacoherentand quasi-coherentmoduleonascheme. BeforeweprovetheRiemann–Rochtheorem wedescribethecoherentandquasi-coherentmodulesonprojectiveschemeswith thehelpofgradedmodules. viii Preface Withveryfewexceptionsfullproofsaregivenundertheassumptionthatthereader has some experience with the basic concepts of algebra, as groups, rings, fields, vector spaces, modules etc. It should be emphasized that, for a reader who has theseprerequisitesathisorherfingertips,thisbookislargelyself-contained. This work would have been impossible without the financial support from Deut- scherAkademischerAustauschdienst(DAAD).Bothauthorshavegotopportunities forvisitingtheRuhrUniversityBochumandtheIndianInstituteofScienceinBan- galorerespectivelyandthankDAADforthegeneroussupportandtheencouraging cooperation. ThesecondauthorwaspartiallysupportedbytheGARPFunds,Indian InstituteofScienceandPartIIB-UGC-SAPgrantofDepartmentofMathematics PhaseIV-VisitingFellows,andhewouldliketoexpresshisgratitudeforthekind hospitalityduringhisstaysin1998and2008. A first draft of the first five chapters was written by Dr.Indranath Sengupta. Dr. AbhijitDasfurtherpushedforthefinerdraft,especiallyfortheChapters5and6, duringhisstayinBochum. BothwerealsosupportedbyDAAD.Weexpressour specialthanksfortheirinterestandcompetentwork. Dr. HartmutWiebefromRuhr UniversityBochumhashelpedusinmanyways. Hegaveustechnicalsupportand steadyencouragementtocometoanend. Wethankhimwholeheartedly. BangaloreandBochum,April2008 DilipPatilandUweStorch [email protected] [email protected] CONTENTS SERIESPREFACE . . . . . . . . . . . . . . . . . . . . . . . v PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . vii CHAPTER1:Finitely GeneratedAlgebras 1.A Algebras over a Ring . . . . . . . . . . . . . . . . . . 1 1.B Factorization in Rings . . . . . . . . . . . . . . . . . . 2 1.C Noetherian Rings and Modules . . . . . . . . . . . . . . 4 1.D Graded Rings and Modules . . . . . . . . . . . . . . . . 7 1.E Integral Extensions . . . . . . . . . . . . . . . . . . . 8 1.F Noether’s Normalization Lemma and Its Consequences . . . 12 CHAPTER2:The K-Spectrum and the Zariski Topology 2.A The K-Spectrum of a K-Algebra . . . . . . . . . . . . 19 2.B AffineAlgebraic Sets . . . . . . . . . . . . . . . . . 21 2.C Strong Topology . . . . . . . . . . . . . . . . . . . 32 CHAPTER3:Prime Spectra and Dimension 3.A The Prime Spectrum of a Commutative Ring . . . . . . . . 41 3.B Dimension . . . . . . . . . . . . . . . . . . . . . . 48 CHAPTER4:Schemes 4.A Sheaves of Rings . . . . . . . . . . . . . . . . . . . 61 4.B Schemes . . . . . . . . . . . . . . . . . . . . . . 68 4.C Finiteness Conditions on Schemes . . . . . . . . . . . . 75 4.D Product of Schemes . . . . . . . . . . . . . . . . . . 77 4.E Affine Morphisms . . . . . . . . . . . . . . . . . . . 83 CHAPTER5:Projective Schemes 5.A Projective Schemes . . . . . . . . . . . . . . . . . . 87 5.B Main Theorem of Elimination . . . . . . . . . . . . . . 102 5.C Mapping Theorem of Chevalley . . . . . . . . . . . . . 107