ebook img

Introduction to Algebraic Geometry PDF

641 Pages·2014·4.359 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Algebraic Geometry

Introduction to Algebraic Geometry Introduction to Algebraic Geometry by Justin R. Smith This is dedicated to my wonderful wife, Brigitte. c2014. JustinR.Smith. Allrightsreserved. (cid:13) ISBN-13: 978-1503381537(CreateSpace-Assigned) ISBN-10: 1503381536 AlsobyJustinR.Smith EyeofaFly(Kindleedition). • ConstanceFairchildAdventures(publishedbySilverLeafBooks): • – TheMillsofGod,hardcover. – TheWellofSouls,(Kindleeditionandpaperback). JustinSmith’shomepage: http://vorpal.math.drexel.edu Email:[email protected] Foreword “Algebraicgeometryseemstohaveacquiredthereputationofbeing esoteric,exclusive,andveryabstract,withadherentswhoaresecretly plottingtotakeoveralltherestofmathematics. Inonerespectthis lastpointisaccurate.” —DavidMumfordin[119]. Thisbookisintendedforself-studyorasatextbookforgraduatestudents or advanced undergraduates. It presupposes some basic knowledge of point- set topology and a solid foundation in linear algebra. Otherwise, it develops all of the commutative algebra, sheaf-theory and cohomology needed to un- derstand the material. This is the kind of background students might have at aschoolthatemphasizesappliedmathematics,oronewhereenrollmentisnot sufficienttorunseparatecoursesincommutativealgebra. The first chapter is an introduction to the algebraic approach to solving a classicgeometricproblem. Itdevelopsconceptsthatareusefulandinteresting on their own, like the Sylvester matrix and resultants of polynomials. It con- cludes with a discussion of how problems in robots and computer vision can beframedinalgebraicterms. Chapter2onpage35developsclassicalaffinealgebraicgeometry,provid- ing a foundation for scheme theory and projective geometry. it also develops thetheoryofGröbnerbasesandapplicationsofthemtotheroboticsproblems fromthefirstchapter. Chapter 3 on page 117 studies the local properties of affine varieties — materialthatisrelevantforprojectivevarietiesaswell. Chapter 4 on page 159 is an introduction to the language of schemes and generalvarieties. Itattemptsmotivatetheseconceptsbyshowingthatcertain naturaloperationsonvarietiescanleadtoobjectsthatareschemesbutnotva- rieties. Chapter5onpage213coversprojectivevarieties,usingmaterialfromchap- ter 3 on open affines. In the section on Grassmanians, it has a complete treat- mentofinteriorproducts. Inthesectiononintersectiontheory,itrevisitstheclassicalproblemintro- ducedinchapter1andprovidesamoderntreatment. In chapter 6, the book culminates with two proofs of the Riemann-Roch theorem. The first is classical (Brill-Noether) and reasonably straightforward —introducingsomeelegantgeometricconceptsandresults. Thesecondproof isthemodernoneusingtheheavymachineryofsheafcohomologyandSerre Duality. Both are included because they give an instructor flexibility in ap- proachingthissubject. Inparticular,thesheafcohomologyofthesecondproof givesstudentsagoodideaofhowthesubjectisdonetoday. vii Appendix A on page 327 develops almost all of the commutative algebra neededtounderstandtherestofthebook(specializedmaterialisprovidedas needed): studentsareonlyrequiredtohaveanunderstandingoflinearalgebra andtheconceptofagroup. Studentswithsomecommutativealgebracanskip itandreferbacktoitasneeded(page-referencesareusedthroughoutthebook tofacilitatethis). Itendswithabrieftreatmentofcategorytheory. Appendix B on page 475 is an introduction to sheaves, in preparation for structuresheavesofschemesandgeneralvarieties. Italsodevelopsthetheory ofvector-bundlesoveranaffinevariety. Appendix C on page 487 develops the topological concept of vector bun- dles. Appendix D on page 499 develops basic concepts of homological algebra and applies this to sheaves and rings. It culminates with a proof of the Serre Dualitytheorem. (cid:127) Sectionsmarkedwitha“dangerousbend”symbolaremoreadvancedandmay beskippedonafirstreading. Answerstoroughlyhalfoftheexercisesarefoundattheendofthebook. Chapters 1 and 2 (with a sidelong glance at appendix A) may be suitable forasemesterofanundergraduatecourse. AppendixAhasbeenusedasthe textforthesecondsemesterofanabstractalgebracourse. Chapters3and4(orevenchapter5,skippingchapter4)couldmakeupthe textforasecondsemester. I am grateful to Patrick Clarke and Thomas Yu for many helpful and in- teresting discussions. Their insights and comments have improved this book considerably. I am also grateful to people at mathoverflow.net for their comments. The list includes (but is not limited to): Matthew Emerton, Will Swain,NickRamsey,andAngeloVistoli. IamindebtedtoNoelRobinsonforpointingoutagapintheproofofcorol- lary 2.8.30 on page 110. Correcting it entailed adding the material on uniform Krulldimensioninsection2.8.2onpage100. IamalsogratefultoMatthiasEttrichandthemanyotherdevelopersofthe software, LYX — a free front end to LATEX that has the ease of use of a word processor,withspell-checking,anexcellentequationeditor,andathesaurus. I haveusedthissoftwareforyearsandthecurrentversionismorepolishedand bug-freethanmostcommercialsoftware. LYXisavailablefromhttp://www.lyx.org. Contents Foreword vii ListofFigures xi Chapter1. Aclassicalresult 1 1.1. Bézout’sTheorem 1 1.2. Theprojectiveplane 3 1.3. TheSylvesterMatrix 10 1.4. ApplicationtoBézout’sTheorem 15 1.5. TheMysticHexagram 25 1.6. Robotics 27 Chapter2. Affinevarieties 35 2.1. Introduction 35 2.2. Hilbert’sNullstellensatz 39 2.3. Computationsinpolynomialrings: Gröbnerbases 45 2.4. Thecoordinatering 62 2.5. specm 71 ∗ 2.6. Applicationstooptimizationtheory 91 2.7. Products 92 2.8. Dimension 98 Chapter3. Localpropertiesofaffinevarieties 117 3.1. Introduction 117 3.2. Thecoordinateringatapoint 117 3.3. Thetangentspace 119 3.4. Normalvarietiesandfinitemaps 143 3.5. Vectorbundlesonaffinevarieties 151 Chapter4. VarietiesandSchemes 159 4.1. Introduction 159 4.2. Affineschemes 160 4.3. Subschemesandringedspaces 166 4.4. Schemes 179 4.5. Products 194 4.6. Varietiesandseparatedschemes 201 Chapter5. Projectivevarieties 213 5.1. Introduction 213 5.2. Grassmannians 220 ix x CONTENTS 5.3. Invertiblesheavesonprojectivevarieties 227 5.4. Regularandrationalmaps 235 5.5. Products 239 5.6. NoetherNormalization 254 5.7. Gradedidealsandmodules 260 5.8. Bézout’sTheoremrevisited 267 5.9. Divisors 277 Chapter6. Curves 297 6.1. Basicproperties 297 6.2. Ellipticcurves 305 6.3. TheRiemann-RochTheorem 315 6.4. ThemodernapproachtoRiemann-Roch 322 AppendixA. Algebra 327 A.1. Rings 327 A.2. Fields 370 A.3. Uniquefactorizationdomains 395 A.4. Furthertopicsinringtheory 403 A.5. Aglimpseofcategorytheory 430 A.6. TensorAlgebrasandvariants 465 AppendixB. Sheavesandringedspaces 475 B.1. Sheaves 475 B.2. Presheavesversessheaves 478 B.3. Ringedspaces 482 AppendixC. Vectorbundles 487 C.1. Introduction 487 C.2. Vector-bundlesandsheaves 494 AppendixD. Cohomology 499 D.1. Chaincomplexesandcohomology 499 D.2. Ringsandmodules 514 D.3. Cohomologyofsheaves 525 D.4. SerreDuality 541 AppendixE. SolutionstoSelectedExercises 555 Appendix. Glossary 609 Appendix. Index 613 Appendix. Bibliography 621

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.