ebook img

Intro to Arrow-Debreu Pricing and Complete Markets PDF

32 Pages·2014·0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intro to Arrow-Debreu Pricing and Complete Markets

ECON 581. Introduction to Arrow-Debreu Pricing and Complete Markets Instructor: Dmytro Hryshko 1/28 Arrow-Debreu economy General equilibrium, exchange economy Static (all trades done at period 0) but multi-period No restrictions on preferences 2/28 Basic setting Two dates: 0, and 1. This set-up, however, is fully generalizable to multiple periods. S possible states of nature at date 1, indexed by s = 1,2,...,S with the corresponding probabilities π(s). One perishable (=non storable) consumption good I agents, indexed i = 1,...,I, with preferences S (cid:88) ui(ci)+βi π(s)ui(ci(s)) 0 0 1 s=1 Agent i’s endowment is described by the vector {yi,(yi(s)) } 0 1 s=1,2,...,S 3/28 Traded securities Arrow-Debreu securities (AD) (contingent claims): security for state s date 1 priced at time 0 at q0(s) promises 1 delivery of one unit of commodity tomorrow (at date 1) if state s is realized and nothing otherwise Thus, individual i’s consumption in state s will equal her holdings of AD securities for state s, date 1 4/28 Agent’s problem. Competitive equilibrium setting S (cid:88) max ui(ci)+βi π(s)ui(ci(s)) 0 0 1 ci,ci(1),...,ci(S) 0 1 1 s=1 s.t. (P) S S (cid:88) (cid:88) ci + q0(s)ci(s) ≤ yi + q0(s)yi(s) 0 1 1 0 1 1 s=1 s=1 ci,ci(1),...,ci(S) ≥ 0 0 1 1 5/28 Definition of the equilibrium Equilibrium is a set of contingent claim prices q0(1),q0(2),...,q0(S) 1 1 1 such that: 1 at those prices ci0,ci1(1),...,ci1(S) solve problem (P) for all i’s, and 2 I I I I (cid:88) (cid:88) (cid:88) (cid:88) ci = yi, ci(s) = yi(s), for each s = 1,2,...,S. 0 0 1 1 i=1 i=1 i=1 i=1 6/28 Competitive equilibrium and Pareto optimality illustrated Agents Endowments Preferences t=0 t=1 s=1 s=2 Agent 1 10 1 2 1c1+0.9(cid:2)1 ln(c1(1))+ 2 ln(c1(2))(cid:3) 2 0 3 1 3 1 Agent 2 5 4 6 1c2+0.9(cid:2)1 ln(c2(1))+ 2 ln(c2(2))(cid:3) 2 0 3 1 3 1 7/28 Maximization problems Agent 1:   1 max 10+1·q0(1)+2·q0(2)−c1(1)·q0(1)−c1(2)·q0(2) {c10,c11(1),c11(2)}≥02(cid:124) 1 1 (cid:123)(cid:122)1 1 1 1 (cid:125) =c1 0 (cid:20) (cid:21) 1 2 + 0.9 ln(c1(1))+ ln(c1(2)) (cid:124)(cid:123)(cid:122)(cid:125) 3 1 3 1 =β1 Agent 2:   1 max 5+4·q0(1)+6·q0(2)−c2(1)·q0(1)−c2(2)·q0(2) {c20,c21(1),c21(2)}≥02(cid:124) 1 1 (cid:123)(cid:122)1 1 1 1 (cid:125) =c2 0 (cid:20) (cid:21) 1 2 + 0.9 ln(c2(1))+ ln(c2(2)) (cid:124)(cid:123)(cid:122)(cid:125) 3 1 3 1 =β2 8/28 Optimum Optimality conditions:  c1(1) : q10(1) = 0.9· 1 · 1 Agent 1: 1 2 3 c11(1) c1(2) : q10(2) = 0.9· 2 · 1 1 2 3 c1(2) 1  c2(1) : q10(1) = 0.9· 1 · 1 Agent 2: 1 2 3 c21(1) c2(2) : q10(2) = 0.9· 2 · 1 1 2 3 c2(2) 1 Feasibility conditions: c1(1)+c2(1) = 5 1 1 c1(2)+c2(2) = 8 1 1 c1(1) = c2(1) = 2.5 1 1 c1(2) = c2(2) = 4. 1 1 9/28 Prices of AD securities Optimality conditions can be expressed as 0.9·π(s)· 1 q0(s) = ci1(s), s,i = 1,2, or 1 1/2 β·π(s)· ∂ui q0(s) = ∂ci1(s), s,i = 1,2. 1 ∂ui 0 ∂ci 0 That is, today’s price of the tomorrow’s good if state s is realized MUi(s) = 1 price of the today’s good MUi 0 1 1 1 1 q0(1) = 2·0.9· · = 2·0.9· · = 0.24 1 3 c1(1) 3 2.5 1 2 1 2 1 q0(2) = 2·0.9· · = 2·0.9· · = 0.30 1 3 c1(2) 3 4 1 10/28

Description:
Arrow-Debreu securities (AD) (contingent claims): security for state s date 1 priced at time 0 at q0. 1(s) promises delivery of one unit of commodity
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.