ECON 581. Introduction to Arrow-Debreu Pricing and Complete Markets Instructor: Dmytro Hryshko 1/28 Arrow-Debreu economy General equilibrium, exchange economy Static (all trades done at period 0) but multi-period No restrictions on preferences 2/28 Basic setting Two dates: 0, and 1. This set-up, however, is fully generalizable to multiple periods. S possible states of nature at date 1, indexed by s = 1,2,...,S with the corresponding probabilities π(s). One perishable (=non storable) consumption good I agents, indexed i = 1,...,I, with preferences S (cid:88) ui(ci)+βi π(s)ui(ci(s)) 0 0 1 s=1 Agent i’s endowment is described by the vector {yi,(yi(s)) } 0 1 s=1,2,...,S 3/28 Traded securities Arrow-Debreu securities (AD) (contingent claims): security for state s date 1 priced at time 0 at q0(s) promises 1 delivery of one unit of commodity tomorrow (at date 1) if state s is realized and nothing otherwise Thus, individual i’s consumption in state s will equal her holdings of AD securities for state s, date 1 4/28 Agent’s problem. Competitive equilibrium setting S (cid:88) max ui(ci)+βi π(s)ui(ci(s)) 0 0 1 ci,ci(1),...,ci(S) 0 1 1 s=1 s.t. (P) S S (cid:88) (cid:88) ci + q0(s)ci(s) ≤ yi + q0(s)yi(s) 0 1 1 0 1 1 s=1 s=1 ci,ci(1),...,ci(S) ≥ 0 0 1 1 5/28 Definition of the equilibrium Equilibrium is a set of contingent claim prices q0(1),q0(2),...,q0(S) 1 1 1 such that: 1 at those prices ci0,ci1(1),...,ci1(S) solve problem (P) for all i’s, and 2 I I I I (cid:88) (cid:88) (cid:88) (cid:88) ci = yi, ci(s) = yi(s), for each s = 1,2,...,S. 0 0 1 1 i=1 i=1 i=1 i=1 6/28 Competitive equilibrium and Pareto optimality illustrated Agents Endowments Preferences t=0 t=1 s=1 s=2 Agent 1 10 1 2 1c1+0.9(cid:2)1 ln(c1(1))+ 2 ln(c1(2))(cid:3) 2 0 3 1 3 1 Agent 2 5 4 6 1c2+0.9(cid:2)1 ln(c2(1))+ 2 ln(c2(2))(cid:3) 2 0 3 1 3 1 7/28 Maximization problems Agent 1: 1 max 10+1·q0(1)+2·q0(2)−c1(1)·q0(1)−c1(2)·q0(2) {c10,c11(1),c11(2)}≥02(cid:124) 1 1 (cid:123)(cid:122)1 1 1 1 (cid:125) =c1 0 (cid:20) (cid:21) 1 2 + 0.9 ln(c1(1))+ ln(c1(2)) (cid:124)(cid:123)(cid:122)(cid:125) 3 1 3 1 =β1 Agent 2: 1 max 5+4·q0(1)+6·q0(2)−c2(1)·q0(1)−c2(2)·q0(2) {c20,c21(1),c21(2)}≥02(cid:124) 1 1 (cid:123)(cid:122)1 1 1 1 (cid:125) =c2 0 (cid:20) (cid:21) 1 2 + 0.9 ln(c2(1))+ ln(c2(2)) (cid:124)(cid:123)(cid:122)(cid:125) 3 1 3 1 =β2 8/28 Optimum Optimality conditions: c1(1) : q10(1) = 0.9· 1 · 1 Agent 1: 1 2 3 c11(1) c1(2) : q10(2) = 0.9· 2 · 1 1 2 3 c1(2) 1 c2(1) : q10(1) = 0.9· 1 · 1 Agent 2: 1 2 3 c21(1) c2(2) : q10(2) = 0.9· 2 · 1 1 2 3 c2(2) 1 Feasibility conditions: c1(1)+c2(1) = 5 1 1 c1(2)+c2(2) = 8 1 1 c1(1) = c2(1) = 2.5 1 1 c1(2) = c2(2) = 4. 1 1 9/28 Prices of AD securities Optimality conditions can be expressed as 0.9·π(s)· 1 q0(s) = ci1(s), s,i = 1,2, or 1 1/2 β·π(s)· ∂ui q0(s) = ∂ci1(s), s,i = 1,2. 1 ∂ui 0 ∂ci 0 That is, today’s price of the tomorrow’s good if state s is realized MUi(s) = 1 price of the today’s good MUi 0 1 1 1 1 q0(1) = 2·0.9· · = 2·0.9· · = 0.24 1 3 c1(1) 3 2.5 1 2 1 2 1 q0(2) = 2·0.9· · = 2·0.9· · = 0.30 1 3 c1(2) 3 4 1 10/28
Description: