ebook img

Intro 2 Particle Cosmology - The Standard Model of Cosmology PDF

257 Pages·2016·2.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intro 2 Particle Cosmology - The Standard Model of Cosmology

UNITEXT for Physics Cosimo Bambi Alexandre D. Dolgov Introduction to Particle Cosmology The Standard Model of Cosmology and its Open Problems UNITEXT for Physics Series editors Michele Cini, Roma, Italy Attilio Ferrari, Torino, Italy Stefano Forte, Milano, Italy Guido Montagna, Pavia, Italy Oreste Nicrosini, Pavia, Italy Luca Peliti, Napoli, Italy Alberto Rotondi, Pavia, Italy Cosimo Bambi Alexandre D. Dolgov (cid:129) Introduction to Particle Cosmology The Standard Model of Cosmology and its Open Problems 123 Cosimo Bambi Alexandre D.Dolgov Department ofPhysics DipartimentodiFisicaeScienzedellaTerra FudanUniversity Universitàdegli Studi diFerrara Shanghai Ferrara China Italy and Department ofPhysics Novosibirsk State University Novosibirsk Russia ISSN 2198-7882 ISSN 2198-7890 (electronic) UNITEXTfor Physics ISBN978-3-662-48077-9 ISBN978-3-662-48078-6 (eBook) DOI 10.1007/978-3-662-48078-6 LibraryofCongressControlNumber:2015945603 SpringerHeidelbergNewYorkDordrechtLondon ©Springer-VerlagBerlinHeidelberg2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer-VerlagGmbHBerlinHeidelbergispartofSpringerScience+BusinessMedia (www.springer.com) Preface Overthepast20years,cosmologyhasemergedasamatureresearchfield,inwhich it is possible to perform precise measurements and test fundamental physics. Its significance in relation to the other areas of research in physics has grown sub- stantially.Towit,twooutoftenNobelPrizesinphysicsawardedduringthepast10 years were conferred for studies related to cosmology (in 2006 and in 2011). Among the preceding more than 100 awards, only one-half of one Nobel Prize (in 1978) was for cosmology. The number of researchers working in cosmology is increasing, and students takingintroductorycoursesoncosmologyincludenotonlythosewhoplantowork in this field, but also those with different interests, seeking to get at least a basic understanding of the subject. The aim of this book is to provide an introduction to modern cosmology for seniorundergraduateandgraduatephysicsstudents,withoutnecessarilyrequiringa strong background in theoretical high energy physics. Students in astronomy/astrophysics, in experimental high energy physics, or in other areas of research as well may be interested to learn some fundamental concepts of the structure and evolution of the Universe. Typically, these students are not closely familiar with General Relativity and quantum field theory, and therefore they may find it difficult to digest the existing cosmology books on the market. This book describes the so-called Standard Cosmological Model. The model’s theoretical aspects are based on General Relativity and on the Standard Model of particle physics, with the addition of the inflationary paradigm. This scenario is very successful in explaining a large amount of observational data including, in particular, the description of the Universe expansion, the primordial abundances of the light elements, and the origin and the properties of the cosmic microwave background radiation. However, there is also a plethora of observed phenomena thatdoesnotfittheframeworksoftheMinimalStandardModelofparticlephysics and cosmology, and represents clear indications for new physics. To name just a few examples, the minimal model cannot explain the cosmological matter- antimatter asymmetry, the observed accelerated expansion of the contemporary Universe, and does not have any candidate for dark matter. The cosmological v vi Preface inflationisstillatthelevelofahypothesis.Itsrealizationdemandssomenewfield or fields, which have not yet been discovered. These subjects are presented here within a rather heuristic approach, which includes a needed description of observational data, and a reduction of mathe- matical technicalities as much as possible. Chapters 6 and 7, dealing, respectively, withinflationandbaryogenesis,aremoreadvancedandrequiresomeknowledgeof quantumfieldtheory,butstudentswhoarenotfamiliarwiththoseconceptscanskip these chapters without affecting their comprehension of the rest of the book. The content of this book is partially based on the cosmology class given at Fudan University by one of the authors and on lectures given at a number of universities by the other. The work of C.B. was supported by the NSFC grant No. 11305038, the Shanghai Municipal Education Commission grant No. 14ZZ001, the Thousand YoungTalentsProgram,andFudanUniversity.TheworkofA.D.D.wassupported by the grant of the Russian Federation Government 11.G34.31.0047. Shanghai Cosimo Bambi Novosibirsk Alexandre D. Dolgov May 2015 Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Problems in Newtonian Cosmology. . . . . . . . . . . . . . . . . . . . 2 1.2 The Standard Model of Cosmology. . . . . . . . . . . . . . . . . . . . 3 1.2.1 Hubble’s Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Big Bang Nucleosynthesis. . . . . . . . . . . . . . . . . . . . 7 1.2.3 Cosmic Microwave Background. . . . . . . . . . . . . . . . 8 1.3 Evidence for New Physics. . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2 Baryogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 Dark Matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.4 Cosmological Constant Problems . . . . . . . . . . . . . . . 13 1.4 Age and Size of the Universe. . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Cosmological Models Beyond General Relativity . . . . . . . . . . 16 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 General Relativity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Scalars, Vectors and Tensors . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Geodesic Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Newtonian Mechanics. . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Relativistic Mechanics. . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Energy and Momentum in Flat Spacetime . . . . . . . . . . . . . . . 23 2.4 Energy-Momentum Tensor in Flat Spacetime. . . . . . . . . . . . . 24 2.5 Curved Spacetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6 Field Theory in Flat and Curved Spacetimes . . . . . . . . . . . . . 27 2.7 Einstein Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 vii viii Contents 3 The Standard Model of Particle Physics. . . . . . . . . . . . . . . . . . . . 35 3.1 Fermions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 Leptons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.2 Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 Gauge Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.2 Higgs Particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Feynman Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Beyond the Minimal Standard Model of Particle Physics. . . . . 44 3.4.1 Supersymmetric Models. . . . . . . . . . . . . . . . . . . . . . 45 3.4.2 Grand Unification Theories . . . . . . . . . . . . . . . . . . . 46 3.4.3 Heavy Neutrinos. . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.4 Peccei-Quinn Model . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 Probabilities of Reactions Among Particles . . . . . . . . . . . . . . 49 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Cosmological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1 Friedmann-Robertson-Walker Metric. . . . . . . . . . . . . . . . . . . 54 4.2 Friedmann Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Cosmological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.1 Einstein Universe . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.2 Matter Dominated Universe . . . . . . . . . . . . . . . . . . . 58 4.3.3 Radiation Dominated Universe. . . . . . . . . . . . . . . . . 60 4.3.4 Vacuum Dominated Universe. . . . . . . . . . . . . . . . . . 61 4.4 Basic Properties of the FRW Metric . . . . . . . . . . . . . . . . . . . 62 4.5 Age of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.6 ΛCDM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.7 Destiny of the Universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5 Kinetics and Thermodynamics in Cosmology. . . . . . . . . . . . . . . . 71 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Thermal Equilibrium in the Early Universe . . . . . . . . . . . . . . 71 5.2.1 General Features. . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2.2 Kinetic Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Plasma Heating and Entropy Conservation. . . . . . . . . 80 5.3 Freezing of Species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3.1 Decoupling and Gershtein-Zeldovich Bound. . . . . . . . 82 5.3.2 Freezing of Non-relativistic Particles. . . . . . . . . . . . . 86 5.4 Neutrino Spectrum and Effective Number of Neutrino Species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Contents ix 6 Inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1 Introduction and History . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Problems of Pre-inflationary Cosmology . . . . . . . . . . . . . . . . 94 6.2.1 Kinematics and Main Features of Inflation. . . . . . . . . 95 6.2.2 Flatness Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.3 Horizon Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.4 Origin of the Cosmological Expansion. . . . . . . . . . . . 98 6.2.5 Smoothing Down the Universe and Creation of Primordial Density Perturbations. . . . . . . . . . . . . . 98 6.2.6 Magnetic Monopole Problem . . . . . . . . . . . . . . . . . . 99 6.3 Mechanisms of Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.1 Canonical Scalar Inflaton with Power Law Potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.2 Other Mechanisms of Inflation. . . . . . . . . . . . . . . . . 103 6.4 Universe Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.4.1 Perturbative Production . . . . . . . . . . . . . . . . . . . . . . 106 6.4.2 Non-perturbative Phenomena . . . . . . . . . . . . . . . . . . 109 6.4.3 Parametric Resonance . . . . . . . . . . . . . . . . . . . . . . . 112 6.4.4 Particle Production in a Gravitational Field . . . . . . . . 115 6.5 Generation of Gravitational Waves . . . . . . . . . . . . . . . . . . . . 117 6.6 Generation of Density Perturbations . . . . . . . . . . . . . . . . . . . 121 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7 Baryogenesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.1 Observational Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.2 General Features of Baryogenesis Models . . . . . . . . . . . . . . . 129 7.2.1 Sakharov Principles. . . . . . . . . . . . . . . . . . . . . . . . . 129 7.2.2 CP Breaking in Cosmology . . . . . . . . . . . . . . . . . . . 131 7.3 Models of Baryogenesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.3.1 Baryogenesis by Heavy Particle Decays. . . . . . . . . . . 133 7.3.2 Electroweak Baryogenesis . . . . . . . . . . . . . . . . . . . . 135 7.3.3 Baryo-Through-Leptogenesis . . . . . . . . . . . . . . . . . . 138 7.3.4 Evaporation of Primordial Black Holes . . . . . . . . . . . 139 7.3.5 Spontaneous Baryogenesis. . . . . . . . . . . . . . . . . . . . 143 7.3.6 Baryogenesis by Condensed Scalar Baryons. . . . . . . . 149 7.4 Cosmological Antimatter . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8 Big Bang Nuclesynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.1 Light Elements in the Universe. . . . . . . . . . . . . . . . . . . . . . . 162 8.2 Freeze-Out of Weak Interactions. . . . . . . . . . . . . . . . . . . . . . 163 8.3 Electron-Positron Annihilation . . . . . . . . . . . . . . . . . . . . . . . 165 8.4 Deuterium Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 x Contents 8.5 Primordial Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . 168 8.6 Baryon Abundance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8.7 Constraints on New Physics. . . . . . . . . . . . . . . . . . . . . . . . . 171 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 9 Dark Matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 9.1 Observational Evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 9.2 Dark Matter Candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.2.1 Lightest Supersymmetric Particle . . . . . . . . . . . . . . . 180 9.2.2 Axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 9.2.3 Super-Heavy Particles . . . . . . . . . . . . . . . . . . . . . . . 181 9.2.4 Primordial Black Holes . . . . . . . . . . . . . . . . . . . . . . 182 9.3 Direct Search for Dark Matter Particles . . . . . . . . . . . . . . . . . 183 9.4 Indirect Search for Dark Matter Particles. . . . . . . . . . . . . . . . 187 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 10 Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.1 Recombination and Decoupling . . . . . . . . . . . . . . . . . . . . . . 192 10.2 Formalism for the Description of Fluctuations . . . . . . . . . . . . 193 10.3 Anisotropies of the CMB. . . . . . . . . . . . . . . . . . . . . . . . . . . 198 10.3.1 Primary Anisotropies. . . . . . . . . . . . . . . . . . . . . . . . 198 10.3.2 Secondary Anisotropies. . . . . . . . . . . . . . . . . . . . . . 200 10.3.3 Polarization Anisotropies. . . . . . . . . . . . . . . . . . . . . 200 10.4 Primordial Perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 10.5 Determination of the Cosmological Parameters. . . . . . . . . . . . 204 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 11 Dark Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 11.1 Cosmological Acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . 207 11.1.1 Astronomical Data . . . . . . . . . . . . . . . . . . . . . . . . . 209 11.1.2 Acceleration by a Scalar Field . . . . . . . . . . . . . . . . . 211 11.1.3 Modified Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.2 Problem of Vacuum Energy. . . . . . . . . . . . . . . . . . . . . . . . . 213 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 12 Density Perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 12.1 Density Perturbations in Newtonian Gravity. . . . . . . . . . . . . . 217 12.2 Density Perturbations in General Relativity . . . . . . . . . . . . . . 223 12.2.1 Metric and Curvature . . . . . . . . . . . . . . . . . . . . . . . 223 12.2.2 Energy-Momentum Tensor. . . . . . . . . . . . . . . . . . . . 224 12.2.3 Choice of Gauge. . . . . . . . . . . . . . . . . . . . . . . . . . . 225

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.