Intracellular delivery of therapeutic antibodies By Gavin S. Hackett, BSc (Hons) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy October 2011 Abstract Therapeutic antibodies are highly versatile macromolecules that can be engineered to bind and inhibit a target with high specificity. Unfortunately, the cell membrane is impenetrable to antibody reagents, thus limiting their use almost entirely to extracellular targets. Expanding the application of therapeutic antibodies to intracellular targets is an exciting concept that could have a huge impact on how intracellular protein-protein interactions involved in diseases can be modulated. The modification of therapeutic antibodies with Cell Penetrating Peptides (CPPs) can enable cellular penetration, however, no general approach to modifying antibodies with CPPs has been developed that allows for systematic optimisation of both the in vivo and cell penetrating properties. In this study, neutralising single-chain variable fragment antibodies (scFvs) have been isolated from naïve scFv libraries using antibody phage display that are specific to the model intracellular targets Bcl-2 and Bcl-xL. Lead scFvs showed potent inhibition of these proteins in an in vitro assay with IC values of <10 nM being calculated, which 50 is superior to the small molecule Bcl-2/xL inhibitor ABT-737. The lead anti-Bcl-xL scFv was conjugated to the CPPs octa-arginine, HIV Tat or Antp . These 49-57 52-58 peptides were synthesised to possess either an N-isobutyryl cysteinyl or N- maleimidopropionyl moiety and a C-terminal lysine residue, allowing for site-specific conjugation to an unpaired cysteine residue introduced to the scFv construct and regioselective introduction of 5-carboxyfluorescein to the CPP, respectively. Live-cell confocal microscopy showed that the scFv-octa-arginine conjugate possessed superior cell entry capabilities compared to the scFv-Tat and scFv-Antp conjugates. 49-57 52-58 Further studies using a panel of cancer cell lines are required to determine if the anti- Bcl-xL scFv-octa-arginine conjugate can induce apoptosis through inhibition of cellular Bcl-xL. Additonally, a novel approach to controlling the cell penetrating properties of the CPP octa-arginine has been developed. It was demonstrated that carbamate protection of octa-arginine’s guanidine functionality effectively inhibited its cell entry capabilities. Moreover, esterase-labile acyloxymethyl carbonyl (AM) protecting groups were i utilised to protect the guanidine functionality of octa-arginine, inhibiting its cell entry capabilities. In a HPLC based assay it was demonstrated that the AM protected octa- arginine was deprotected by pig liver esterase, suggesting that in vivo deprotection could be achieved by serum esterases. The controlled unmasking of octa-arginine is predicted to increase its circulation time and reduce non-specific tissue uptake in vivo, potentially making this CPP more suitable for in vivo applications. The methodologies utilised for the preparation of scFv-CPP conjugates and developed for the controlled unmasking of octa-arginine in this study will allow for optimisation of the cell penetrating and in vivo properties of this promising class of macromolecular therapeutic, thus providing a gate-way to unlocking the immense potential of therapeutic intracellular antibodies. ii Acknowledgments I would like to thank my supervisors Peter Fischer, Weng Chan and Ron Jackson for their continued support, encouragement and guidance throughout my PhD studies. I would also like to acknowledge the EPSRC, AstraZeneca and MedImmune for funding the PhD. I am especially grateful to all of the present and past members of the chemistry corridor in CBS for their friendship and for providing an enjoyable working atmosphere. I particularly want to thank Cillian Byrne, Chris Gordon, Charlie Mathews and Chou-Hsiung Chen for their invaluable suggestions and help. I also want to thank Chris for his encouragement while I was writing-up and for proof- reading my thesis. I am extremely grateful for all of the help and invaluable advice from so many people at MedImmune in Cambridge, in particular Monica Papworth, Peter Ravn, Siobhan O'Brien, Jeff Revell, Anna-Lena Schinke, Des O'Shea and Sara Carmen for both advice with my work and also friendship, making the time that I spent in Cambridge an enjoyable and invaluable experience. I would also like to express my thanks to all of the technical staff in CBS, in particular Lee Hibbett and Graham Coxhill for help with the HPLC, MS and many other lab related things. I must also thank my two past house-mates Asa Bluck and Graham Mullard for always being ready for a beer (or two…) after work. Finally, I thank my parents, brothers, sister, and grandparents for supporting me when things were difficult. I am also very grateful to Jessica Chu for her support throughout the final year of my PhD studies . This thesis is dedicated to my parents iii Abbreviations ACPP Activatable cell penetrating peptide Alpha screen Amplified luminescent proximity homogeneous assay AM Acyloxymethyl carbonyl AMI Acute myocardial infarction Antp Penetratin AO Acyloxy carbonyl ATTEMPTS Antibody targeted, [protamine] triggered, electrically modified pro-drug strategy BH 1- 4 Bcl-2 homology domain 1-4 CDR Complementarity determining region CHO Chinese hamster ovary CPP Cell penetrating peptide EC 50% maximal effective concentration 50 ELISA Enzyme linked immunosorbant assay Fab Fragment antigen binding region FBS Fetal bovine serum Fc region Fragment crystalline Fv Variable domain HIV Human immunodeficiency virus HPLC High-performance liquid chromatography iv HRMS High resolution mass mass spectrometry HRP Horse radish peroxidase HSPG Heperan sulfate proteoglycans HTS High throughput screening IACT Intracellular antibody capture technology IC 50% maximal inhibitory concentration 50 %ID/g % Injected dose per gram of target tissue K Dissociation constant d K Inhibition constant i MALDI-TOF Matrix-assisted laser desorption/ionization time-of-flight MMP Matrix metalloproteinase MS Mass spectrometry naCPP Non-amphipathic cell penetrating peptide NK1R Neurokinin-1 receptor NMR Nuclear magnetic resonance paCPP Primary amphipathic cell penetrating peptide PD Pharmacodynamic PLE Pig liver esterase PK Pharmacokinetic PPI Protein-protein interaction R Retention factor f RISC RNA-induced silencing complex RNAi RNA interference v rt Room tempertaure SA Streptavidin saCPP Secondary amphipathic cell penetrating peptide ScFv Single chain variable fragments SMoC Small molecule carrier SPPS Solid-phase peptide synthesis Tat HIV Transactivator of Transcription TNF Tumour necrosis factor TOF Time-of-flight vi Contents 1 Introduction .......................................................................................................................................... 1 1.1 Inhibiting protein-protein interactions ..................................................................................... 1 1.2 Therapeutic antibodies ............................................................................................................. 4 1.2.1 Antibody Engineering ..................................................................................................... 5 1.3 Targeting intracellular protein-protein interactions with antibodies ........................................ 9 1.3.1 Intrabodies .................................................................................................................... 11 1.3.2 Transbodies ................................................................................................................... 13 1.4 Cell penetrating peptides ....................................................................................................... 16 1.4.1 Mechanism of CPP internalisation ................................................................................ 19 1.4.2 The application of CPPs in vivo .................................................................................... 22 1.4.3 Modulation of CPP in vivo properties ........................................................................... 25 1.5 Making Transbodies .............................................................................................................. 30 1.5.1 Chemical conjugation of CPPs to antibodies ................................................................ 31 1.6 Research aims and objectives ................................................................................................ 39 2 Isolation of neutralising single chain antibodies specific to Bcl-2 .................................................. 42 2.1 Bcl-2 - The model target ........................................................................................................ 42 2.2 Isolation of anti-Bcl-2 and Bcl-xL scFv using antibody phage display ................................. 46 2.2.1 Selection of anti-Bcl-2 and anti-Bcl-xL scFvs .............................................................. 49 2.3 Identification of scFv neutralisating towards Bcl-2 and Bcl-xL ............................................ 54 2.3.1 Profiling of positive hits ............................................................................................... 59 2.3.2 Binding of scFv in reducing environment ..................................................................... 62 2.4 Conclusions ............................................................................................................................ 64 2.5 Materials and Methods ........................................................................................................... 66 2.5.1 Biotinylation of Bcl-2 and Bcl-xL ................................................................................ 66 2.5.2 Direct binding ELISA ................................................................................................... 67 2.5.3 Phage selection protocol ............................................................................................... 68 2.5.4 Phage rescue for subsequent selection rounds .............................................................. 70 2.5.5 Analysis of selected phage ............................................................................................ 70 2.5.6 Phage ELISA ................................................................................................................ 71 2.5.7 High-throughput screening ........................................................................................... 72 2.5.8 Alpha Screen profiling of His-tag affinity purified scFv. ............................................. 74 2.5.9 scFv binding ELISA in the presence of reduced glutathione ........................................ 74 3 Preparation and characterisation of scFv-CPP conjugates ............................................................ 76 3.1 Synthetic approaches for scFv-CPP conjugation ................................................................... 77 3.2 Expression of scFv-Cys ......................................................................................................... 78 vii 3.2.1 Mammalian expression of scFv-Cys ............................................................................. 82 3.3 Fmoc solid-phase peptide synthesis of CPPs ......................................................................... 87 3.3.1 Synthetic strategies for CPP derivatives ....................................................................... 89 3.3.2 Penetratin derivatives .................................................................................................... 92 3.3.3 Octa-arginine derivatives .............................................................................................. 98 3.3.4 HIV Tat derivatives ............................................................................................... 100 49-57 3.3.5 Pro derivatives .......................................................................................................... 102 14 3.3.6 Summary of CPP derivative synthesis ........................................................................ 104 3.4 Preparation of scFv-CPP conjugates ................................................................................... 105 3.4.1 Thioether conjugation ................................................................................................. 105 3.4.2 Disulfide conjugation .................................................................................................. 107 3.4.3 Summary of scFv-CPP conjugate preparation ............................................................ 111 3.5 Cellular delivery of scFv-CPP(FAM) conjugates ................................................................ 114 3.5.1 Fluorescence microscopy ............................................................................................ 114 3.5.2 Confocal Laser Scanning Microscopy (CLSM) .......................................................... 116 3.5.3 Summary of scFv-CPP cell internalisation ................................................................. 121 3.6 Biological activity of scFv-CPP conjugates ........................................................................ 122 3.6.1 The effect of scFv-CPP constructs on Rat basophilic leukaemia cell (RBL-2H3) viability .................................................................................................................................... 124 3.7 Conclusions ......................................................................................................................... 126 3.8 Materials and Methods ........................................................................................................ 129 3.8.1 SDS-PAGE and western blot analysis ........................................................................ 129 3.8.2 General sub-cloning procedure ................................................................................... 130 3.8.3 Expression of scFv-Cys in E. coli with pUC119MCH vector .................................... 132 3.8.4 Expression of scFv-Cys in E. coli with p10HISCYS vector ....................................... 133 3.8.5 Transient expression of scFv-Cys in Cep6 cells with pEOMCH vector ..................... 135 3.8.6 Preparation of scFv-CPP conjugates ........................................................................... 137 3.8.7 General cell culture protocol ....................................................................................... 139 3.8.8 Fluorescence microscopy ............................................................................................ 140 3.8.9 Confocal scanning laser microscopy........................................................................... 140 3.8.10 Biological activity of scFv-CPP conjugates - Cell Titre Glo assay® .................. 141 4 Isolation of neutralising single chain antibodies specific to Bcl-2 ................................................ 143 4.1 Proof-of-concept: Inhibition of CPP cell internalisation by carbamate protection of the guanidine moieties ............................................................................................................................ 146 4.1.1 Cell internalisation of protected octa-arginine derivatives ......................................... 157 4.2 Protection of arginine side-chain with hydrolytic and esterase-labile protecting groups .... 161 4.2.1 Synthesis of protected isothioureas ............................................................................. 164 4.2.2 The stability of acyloxycarbonyl and acyloxmethyoxy carbonyl protected arginine .. 169 4.2.3 Synthesis of an acyloxymethyl carbonyl protected octa-arginine derivative .............. 184 viii 4.1 Conclusions ......................................................................................................................... 192 4.2 Materials and methods ......................................................................................................... 195 4.2.1 Hydrolytic stability assay ............................................................................................ 195 4.2.2 Esterase assay ............................................................................................................. 195 4.2.3 Confocal scanning laser microscopy........................................................................... 196 5 Conclusions and future directions .................................................................................................. 197 6 Experimental .................................................................................................................................... 210 6.1 Materials and Instrumentation ............................................................................................. 210 6.1.1 General method for Fmoc solid-phase peptide synthesis of CPPs .............................. 211 6.2 Experimental for Chapter 3 ................................................................................................. 213 6.3 Experimental for Chapter 4 ................................................................................................. 224 7 References ......................................................................................................................................... 243 Appendix I-III…………………………………………………………………………………………263 ix
Description: