ebook img

Interval Linear Algebra and Computational Complexity PDF

0.23 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interval Linear Algebra and Computational Complexity

Chapter 1 Interval Linear Algebra and Computational Complexity JaroslavHora´cˇek,MilanHlad´ıkandMichalCˇerny´ 6 1 0 2 b e F AbstractThisworkconnectstwomathematicalfields–computationalcomplexity 1 andintervallinearalgebra.Itintroducesthebasictopicsofintervallinearalgebra– regularityandsingularity,fullcolumnrank,solvingalinearsystem,decidingsolv- ] C abilityofalinearsystem,computinginversematrix,eigenvalues,checkingpositive C (semi)definiteness or stability. We discuss these problems and relations between . themfromtheviewofcomputationalcomplexity.Manyproblemsinintervallinear s c algebraare intractable,hencewe emphasize subclassesof these problemsthatare [ easilysolvableordecidable.Theaimofthisworkistoprovideabasicinsightinto thisfieldandtoprovidematerialsforfurtherreadingandresearch. 1 v 9 4 3 1.1 Introduction 0 0 . The purposeof this workis to emphasizerelationsbetweenthe two mathematical 2 fields- intervallinearalgebraandcomputationalcomplexity.Thisisnota pioneer 0 work. Varietyof relationsbetween intervalproblemsandcomputationalcomplex- 6 1 ityiscoveredbymanypapers.Thereare alsofewmonographsthataredevotedto : this topic [4, 22, 46]. Some questions may arise in mind while reading the previ- v i ousworks. Amongall, it is the questionaboutthe equivalenceof the notionsNP- X hardnessandco-NP-hardness.Someauthorsusethesenotionsassynonyms.Some r a JaroslavHora´cˇek Charles University, Faculty of Mathematics and Physics, Department of Applied Mathematics, Malostranske´na´m.25,11800,Prague,CzechRepublic,e-mail:[email protected] MilanHlad´ık Charles University, Faculty of Mathematics and Physics, Department of Applied Mathematics, Malostranske´na´m.25,11800,Prague,CzechRepublice-mail:[email protected] MichalCˇerny´ UniversityofEconomics,FacultyofComputerScienceandStatistics,na´m.W.Churchilla4,13067 Prague,CzechRepublice-mail:[email protected] 1 2 JaroslavHora´cˇek,MilanHlad´ıkandMichalCˇerny´ distinguishbetweenthem.Anotherquestionsthatmayarisetouchestherepresenta- tionandreducibilityofintervalproblemsinagivencomputationalmodel.Wewould liketoshedmorelight(notonly)ontheseissues. Manywell-knownproblemsofclassicallinearalgebrabecomeintractablewhen we introduce intervals into matrices and vectors. However, not everything is lost. Therearemanyinterestingsub-classesofproblemsthatbehavewell.Wewouldlike topointoutthesefeasiblecases,sincetheyareinterestingeitherfromthetheoretical orthecomputationalpointofview. Our workdoesnotaspire to replace the classical monographsor handbooks.It lacks many of their details that are cited in the text. Nevertheless, it collects even somerecentresultsthataremissinginthemonographs.Italsoprovideslinksandre- ductionsbetweenthevariousareasofintervallinearalgebra.Itprovidesanecessary andcompactintroductiontocomputationalcomplexityandintervallinearalgebra. Thenitconsiderscomplexityandfeasibilityofvariouswell-knownlinearalgebraic taskswhenconsideredwithintervalstructures–regularityandsingularity,fullcol- umnrank,solvingalinearsystem,decidingsolvabilityofalinearsystem,computing inversematrix,eigenvalues,checkingpositive(semi)definitenessorstability. Wehopethispapershouldhelpnewcomerstothisareatoimproveher/hisorien- tationinthefieldorprofessionalstoprovideasignposttomoredeeperliterature. 1.2 Interval linearalgebra – partI Intervallinearalgebraisamathematicalfielddevelopedfromclassicallinearalge- bra. The only difference is, that we do not work with real numbers but with real closedintervals a=[a,a], wherea a.ThesetofallclosedrealintervalsisdenotedIR(thesetofallclosed ≤ rationalintervalsisdenotedIQ)Wecanuseintervalsformanyreasons–inapplica- tionswesometimesdonotknowsomeparametersprecisely,thatiswhy,werather useintervalsofpossiblevalues;somerealnumbersareproblematic(e.g.,p ,√2,...) becauseitisnoteasytorepresentthemprecisely,thatiswhy,wecanrepresentthem withrigorousintervalscontainingthemetc.Withintervalwecandefinearithmetic (therearemorepossibledefinitions,wechoseoneofthemostbasicones). Definition1. Letushavetwointervalsx=[x,x]ay=[y,y].Thearithmeticaloper- ations+, , ,/aredefinedasfollows ∗ − x+y= [x+y,x+y], x y= [x y,x y], − − − x y= [min(S),max(S)], whereS= xy,xy,xy,xy , ∗ { } x/y= x (1/y), where1/y=[1/y,1/y], 0 /y. ∗ ∈ 1 IntervalLinearAlgebraandComputationalComplexity 3 Hence,wecanuseintervalsinsteadofrealnumbersinformulas.However,wehave tobecareful.Ifthereisamultipleoccurrenceofthesameintervalinaformula,the intervalarithmeticdoesseethemastwodifferentintervalsandwegetanoveresti- mationintheresultinginterval.Forexample,letushavex=[ 2,1]andfunctions − f (x)=x2 and f (x)=x x.Thenweget 1 2 ∗ f (x)= f ([ 2,1])=[ 2,1]2=[0,4], 1 1 − − f (x)= f ([ 2,1])=[ 2,1] [ 2,1]=[ 2,4]. 2 2 − − ∗ − − Inthefirstcaseweseetheoptimalresult,inthesecondcaseweseeoverestimation. Thatiswhy,theformofourmathematicalexpressionmatters.However,weknow thecaseswhentheresultingintervalisoptimal[28]. Theorem1.Applyingintervalarithmeticonexpressionsinwhichallvariablesoc- curonlyoncegivestheoptimalresultinginterval. Using intervalswe can buildlargerstructures.In the intervallinearalgebrathe mainnotionisanintervalmatrix.Itisdefinedasfollows: A= A A A A , { | ≤ ≤ } whereA,A are realm n matricescalled lower and upper boundandthe relation × isalwaysunderstoodcomponentwise.Inanotherwords,itisamatrixwithcoef- ≤ ficientsformedbyrealclosedintervals.Inthefollowingtext,wewilldenoteevery intervalstructureinboldface.Sinceanintervalvectorisaspecialcaseofaninterval matrix, we define it similarly. We can see that if all intervals in the structures are degenerate,i.e, A=A, we get a classical linear algebra. Therefore,intervallinear algebraisactuallyageneralizationofthepreviousone. AnotherwaytodefineanintervalmatrixisusingitsmidpointmatrixA andits c radiusmatrixD 0as ≥ A=[A D ,A +D ]. c c − InthefollowingtextweautomaticallysupposethatA ,D representcorresponding c midpointand radiusmatrix of A, and b ,d representcorrespondingmidpointand c radius vector of b. When we talk abouta general square matrix we automatically assumethatitisofsizen. We mention some special structures that we will use quite often. The identity matrixisdenotedI,thematrixcontainingonlyonesEandthevectorcontainingonly onese.AnotherusefulmatrixisD =diag(y ,...,y )amatrixwiththevectoryas y 1 n themaindiagonal.Weoftenneedtodescribesomepropertiesofintervalstructures vectorsconsistingofonly 1.Wedenotethesetofalln-dimensional 1vectorsas ± ± Y .AusefulconceptisamatrixA definedas n yz A =A D D D , yz c y z − forsome giveny,z Y . Everyits coefficienton the positon(i,j) is an upperor a n ∈ lowerboundofA dependingonthesignofy z .Wewillsometimesneedtocheck ij i j spectralradiusofarealmatrixA,wedenoteit·r (A). 4 JaroslavHora´cˇek,MilanHlad´ıkandMichalCˇerny´ Manydefinitionshaveanintuitivegeneralizationforintervallinearalgebra: AnintervalmatrixAhasapropertyPifeveryA AhasthepropertyP. ∈ Thisappliestostability,fullcolumnrank,inversenonnegativity,diagonallydom- inantmatrices,M-matrixandH-matrixproperty,amongothers. Many problemsin interval linear algebra are very difficult to be computed ex- actly(withresultingintervalsoftightestpossiblebounds).Thatiswhywe inspect thepossibilityofapproximationofthesebounds.Therearemanytypesofapprox- imation.Thereareseveralkindsof errorswhenwe approximatea numbera –the absolute,relative[6]andinverserelative[21]approximationerrors. Definition2. An algorithm computes a with absolute approximation error e if it computesa0suchthata0 [a e ,a+e ]. Analgorithmcompute∈saw−ithrelativeapproximationerror e ifitcomputesa0 suchthata0 (1+[ e ,e ])a. Analgori∈thmcom−putesawithinverserelativeapproximationerror e ifitcom- putesa0suchthata (1+[ e ,e ])a0. ∈ − Attheendwementionaveryusefultheoremthatwewilluseveryofteninthis text.Itoriginallycomesfromtheareaofnumericalmathematics[29]. Theorem2 (Oettli-Prager). LetushaveanintervalmatrixandvectorA,b.Fora realvectorx Rn itholdsAx=bforsomeA A,b bifandonlyif ∈ ∈ ∈ A x b D x +d . c c | − |≤ | | Thiswasjustabriefintroductiontointervalanalysis.Intervallinearalgebrahas many important applications – system verification, model checking, handling un- certain data. For a huge variety of applications see, e.g., [16, 17, 18]. For more informationorapplicationsinnonlinearmathematicssee[25]. 1.3 Complexity theory background Now,wetakeasmallbreakanddigdeeperintotheareaofcomputationalcomplex- ity.Withthatinmindwereturnbacktointervallinearalgebraandintroducesome well-knownissuesfromtheviewpointofcomputationalcomplexity. 1.3.1 Binaryencoding and sizeofan instance For complexity-theoreticclassification of interval-theoretic problems, it is a stan- dard to use the Turingcomputationmodel. We assume that an instance of a com- putationalproblemisformalizedasabit-string,i.e.,afinite0-1sequence.Thuswe 1 IntervalLinearAlgebraandComputationalComplexity 5 cannotworkwithreal-valuedinstances;insteadweusuallyrestrictourselvestora- tionalnumbersexpressedasfractions q withq,r Nwrittendowninbinaryinthe coprimeform.Then,thesizeofaratio±nralnumber∈ q isunderstoodasthenumber ±r ofbitsnecessarytowritedownthesignandbothqandr(tobeprecise,oneshould alsotakecareofdelimiters).Ifaninstanceofaproblemconsistsofmultiplerational numbersA=(a ,...,a ) (e.g., when the input is a vector or a matrix), we define 1 n size(A)=(cid:229) n size(a). i=1 i Ininterval-theoreticproblems,inputsofalgorithmsareusuallyintervalnumbers, vectorsormatrices.Whenwesaythatanalgorithmistoprocessanm ninterval × matrixA,weunderstandthatthealgorithmisgiventhepair(A Qm×n,A Qm×n) ∈ ∈ and that the size of the inputis L:=size(A)+size(A). Wheneverwe speak about complexity of such algorithm, we mean a function f (L) counting the number of steps of the corresponding Turing machine as a function of the bit-size L of the input(A,A). Although the literature focuses mainly on the Turing model (and here we also doso),itischallengingtoinvestigatethebehaviorofinterval-theoreticproblemsin othercomputationalmodels,such as the Blum-Shub-Smale(BSS) modelfor real- valuedcomputing[2]orthequantummodel[1]. 1.3.2 Functional problemsanddecisionproblems Formally, a functional problem F is a total (defined for each input) function F: 0,1 0,1 ,where 0,1 isthesetofallfinitebit-strings.Adecisionproblem ∗ ∗ ∗ { } →{ } { } (orYES/NOproblem)AisatotalfunctionA: 0,1 0,1 . ∗ { } →{ } If there exists a Turing machine computingA(x) for every x 0,1 , we say ∗ ∈{ } thattheproblemA(eitherdecisionorfunctional)isrecursive. Itiswellknownthatmanydecisionproblemsinmathematicsarenonrecursive; e.g.,decidingwhetheragivenformulaisprovableinZermelo-FraenkelSetTheory is nonrecursiveby thefamousGo¨delIncompletenessTheorem.Fortunately,a ma- jority ofdecision problemsin intervallinear algebraare recursive.Such problems can usually be written down as arithmetic formulas(i.e., quantifiedformulascon- tainingnaturalnumberconstants,arithmeticaloperations+, ,relations=, and × ≤ propositionalconnectives).Suchformulasaredecidable(overthereals)byTarski’s QuantifierEliminationMethod[31,32,33]. ExampleA:Regularityofanintervalmatrix.EachmatrixA Aisnonsingular • ∈ iff( A)[A A A det(A)=0].Thisformulaisarithmeticalsincedet()isa ∀ ≤ ≤ → 6 · polynomial,andthusitisexpressibleintermsof+, . ExampleB:Isagivenl Qthelargesteigenvalue×ofsomesymmetric A A? • ∈ ∈ Thisquestioncanbewrittendownas( A)[A=AT &A A A&( x=0)[Ax= l x]&( l ) ( x =0)[Ax =l x] ∃l l ]. ≤ ≤ ∃ 6 ′ ′ ′ ′ ′ ′ ∀ { ∃ 6 → ≤ } AlthoughQuantifierEliminationprovesrecursivity,itisahighlyinefficientmethod fromthepracticalviewpoint—thecomputationtimecanbedoublyexponentialin 6 JaroslavHora´cˇek,MilanHlad´ıkandMichalCˇerny´ general.Inspiteofthis,formanyproblems,reductiontoQuantifierEliminationis theonly(andthus“thebest”)knownalgorithmicresult. 1.3.3 Weakand strongpolynomiality It is a usual convention to say that a problem A is “efficiently” solvable if it is solvable in polynomial time, i.e., in at most p(L) steps of the corresponding Tu- ringmachine,where p is a polynomialand Lis the size ofthe input.The class of efficientlysolvabledecisionproblemsisdenotedbyP. Taking a more detailed viewpoint, this is a definition of polynomial-timesolv- ability in the weak sense. In our context, we are usually processing a family a ,...,a ofrationalnumbers,whereL=(cid:229) n size(a),performingarithmeticalop- 1 n i=1 i erations +, , , , with them. The definition of (weak) polynomiality implies − × ÷ ≤ thatanalgorithmcanperformatmost p (L)arithmeticaloperationswithnumbers 1 ofsizeatmost p (L)duringitscomputation,where p ,p arepolynomials. 2 1 2 Ifapolynomial-timealgorithmsatisfiesthestrongerpropertythatitperformsat most p (n) arithmetical operationswith numbers of size at most p (L) during its 1 2 computation, we say that it is strongly polynomial. The difference is whether we canboundthenumberofarithmeticaloperationsonlybyapolynomialinL,orbya polynomialinn. Example. Given a rational A and b, the question ( x)[Ax=b] can be decided ∃ in strongly polynomial time (although it is nontrivial to implement the Gaussian eliminationtoyieldastronglypolynomialalgorithm).Onthecontrary,thequestion ( x)[Ax b] (which is a form of linear programming)is known to be solvable in ∃ ≤ weakly polynomial time only and it is a major open question whether a strongly polynomialalgorithmexists(thisisSmales’sNinthMilleniumProblem,see[52]). The main message of the previous example is: whenever an interval-algebraic problemissolvableinpolynomialtimeandrequireslinearprogramming(whichis a frequentcase),it isonlya weaklypolynomialresult.Thisiswhythe rarecases, when interval-algebraicproblemsare solvable in stronglypolynomialtime, are of specialinterest. 1.3.4 NP, coNP Recall that NP is the class of decision problems A with the following property: thereisapolynomialpandadecisionproblemB(x,y),solvableintimepolynomial insize(x)+size(y),suchthat,foranyinstancex 0,1 , ∗ ∈{ } A(x)=1 iff ( y 0,1 ) size(y) p(size(x)) andB(x,y)=1. (1.1) ∗ ∃ ∈{ } ≤ (⋆) | {z } 1 IntervalLinearAlgebraandComputationalComplexity 7 The string y is called witness for the -quantifier, or also witness of the fact that ∃ A(x) = 1. The algorithm for B(x,y) is called verifier. For short, we often write A(x)=( py)B(x,y), showing that A results from the -quantification of the effi- ∃ ∃ cientlydecidablequestionB(andthequantifierrangesoverstringsofpolynomially boundedsize).Observethatthequestion( py)B(x,y)neednotbedecidableinpoly- nomialtime(infact,thisistheopenprob∃lem“P=?NP”),sincethequantification rangeisexponentialinsize(x). Alotof -problemsfromvariousareasofmathematicsareinNP:“doesagiven ∃ booleanformula x have a satisfying assignmenty?”, “does a given graph x have 3-coloringy?”, “doesa given system x=‘Ay b’ have an integralsolution y?”, ≤ andmanyothers. TheclasscoNPischaracterizedbyreplacementofthequantifierin(1.1): A(x)=1 iff ( y 0,1 )size(y) p(size(x)) B(x,y)=1. ∗ ∀ ∈{ } ≤ → ItiseasilyseenthattheclasscoNPisformedofcomplementsofNP-problems,and vice versa. (Recall that a decision problem A is a 0-1 function;its complement is definedascoA=1 A.) − Theprominentexampleof a coNP-questionis decidingwhethera booleanfor- mula is a tautology,or in other words, “given a booleanformula x, is it true that everyassignmentymakesittrue?“. Itis easy to see againthatdecidinga coNP-questioncan take exponentialtime sincethe -quantifierrangesoverasetexponentiallylargeinsize(x). ∀ Example. Interval linear algebra is not an exception: a lot of -questions be- ∃ long to NP, but we should be careful a bit. As an example, consider the problem SINGULARITY:givenA IQn×n, A Awhichissingular?Wecouldexpectthat ∈ ∃ ∈ SINGULARITY NP since the positive answer can be certified by the -witness ∈ ∃ A =aparticularsingularmatrixinA.Indeed,thenaturalverifierB(A,A ),check- 0 0 ingwhetherA AandA issingular,worksinpolynomialtime.Butaproblemis 0 0 ∈ hidden in the condition(⋆) in (1.1). To be fully correct, we would have to prove: thereexistsapolynomial psuchthatwheneverAcontainsasingularmatrix,then it also contains a rational singular matrix A such that size(A ) p(L), where 0 0 ≤ L=size(A)+size(A).Directproofsofsuchpropertiesare“uncomfortable”.Butwe canproceedinamoreelegantway,usingTheorem2: A As.t.Aissingular ∃ ∈ A A, x=0s.t.Ax=0 ⇔ ∃ ∈ ∃ 6 x=0s.t. D x A x D x, c ⇔ ∃ 6 − | |≤ ≤ | | s 1 n xs.t. D D x A x D D x, D x 0, eTD x 1. (1.2) s c s s s ⇔ ∃ ∈{± } ∃ − ≤ ≤ ≥ ≥ (†) | {z } Givens 1 n, the relation( ) can be checkedin polynomialtime by linear ∈{± } † programming.Thus, we can define the verifier B(A,s) as the algorithm checking thevalidityof( ).Infact,wehavereformulatedthe -question,“isthereasingular † ∃ 8 JaroslavHora´cˇek,MilanHlad´ıkandMichalCˇerny´ A A?”, intoan equivalent -question,“is there a sign vector s 1 n s.t. (†) ∈ ∃ ∈{± } holdstrue?”,andnowsize(s) Lisobvious. ≤ Themethodof(1.2)isknownasorthantdecompositionsinceitreducestheprob- lem to inspectionof orthantsD x 0, for every s 1 n, and the work in each s ≥ ∈{± } orthantis“easy”(here,theworkinanorthantamountstoasinglelinearprogram). Manypropertieswithintervaldataaredescribedbysufficientandnecessarycondi- tionsthatuseorthantdecomposition. WecanalsoimmediatelyseethatREGULARITY=coSINGULARITY(“given A,iseveryA Anonsingular?”)belongstocoNP. ∈ 1.3.5 Decisionproblems:NP-, coNP-completeness A decision problem A is reducible to a decision problem B (denoted A B) if ≤ there exists a polynomial-time computable function g: 0,1 0,1 , called ∗ ∗ { } →{ } reduction,suchthatforeveryx 0,1 wehave ∗ ∈{ } A(x)=B(g(x)). (1.3) Said informally,any algorithm for B can also be used for solving A: given an in- stancexofA,wecanefficiently“translate”itintoaninstanceg(x)oftheproblem BandrunthemethoddecidingB(g(x)),yieldingthecorrectanswertoA(x).Thus, anydecisionmethodforBisalsoavalidmethodforA,ifweadmitthepolynomial timeforcomputationofthereductiong.InthissensewecansaythatifA B,then ≤ B“ashardasA,orharder”.IfbothA BandB A,thenproblemsA,Barecalled ≤ ≤ polynomiallyequivalent. The relation induces a partial ordering on classes of polynomially equiva- ≤ lent problems in NP (called NP-degrees) and this ordering can be shown to have a maximumelement.TheproblemsinthemaximumclassarecalledNP-complete problems. And similarly, coNP has a class of coNP-complete problems. They are complementary:aproblemAisNP-completeiffitscomplementiscoNP-complete. LetX NP,coNP .IfaproblemBisX-complete,anymethodforitcanbe understood∈as{auniversa}lmethodforanyproblemA X,modulopolynomialtime ∈ neededforcomputingthereduction.Indeed,sinceBisthemaximumelement,we haveA BforanyA X.ItisgenerallybelievedthatX containsproblemswhich ≤ ∈ arenotefficientlydecidable.InNP,booleansatisfiabilityisaprominentexample;in coNP,itisthetautologyproblem.Then,by -maximality,noX-completeproblem is efficiently decidable. This shows why a≤proof of X-completeness of a newly studiedproblemisoftenunderstoodasproofofitscomputationalintractability. Remark.Fromapracticalperspective,aproofofNP-orcoNP-completenessis thesamebadnews,tellingusthat“nothingbetterthansuperpolynomial-timealgo- rithmscanbeexpected”.ButformallywemustdistinguishbetweenNP-andco-NP completenessbecauseitisbelievedthatNP-completeproblemsarenotpolynomi- 1 IntervalLinearAlgebraandComputationalComplexity 9 ally equivalent with coNP-complete problems. (This is the “NP =? coNP” open problem). NP-andcoNP-completeproblemsinintervalanalysis.Asurveyofsuchprob- lemsformsthecoreofthispaper.AnimportantexampleofanNP-completeproblem isSINGULARITYofanintervalmatrixA.Itscomplement,REGULARITY,isthus coNP-complete. WhenweknowthatBisX-completeandweproveB CforaproblemC X, thenCisalsoX-complete.Thisisthemethodbehinda≤llX-completenessp∈roofs of this paper. For example, let EIGENVALUE be the problem “given a square interval matrix A and a number l , decide whether l is an eigenvalue of some A A”. It is easy to prove SINGULARITY EIGENVALUE; indeed, if we are ∈ ≤ to decidewhetherthereis a singularmatrix A A, itsufficesto use the reduction g:A (A,l =0). The proof of EIGENVAL∈UE NP can be derived from the 7→ ∈ orthantdecompositionmethod;thisprovesthatEIGENVALUEisanNP-complete problem. 1.3.6 Decisionproblems:NP-, coNP-hardness We restrictourselvestoNP-hardproblems;thereasoningforcoNP-hardproblems isanalogous. IntheprevioussectionwespokeaboutNP-completeproblemsasthe -maximum ≤ elementsinNP.Butourreasoningcanbemoregeneral.Wecanworkontheentire classofdecisionproblems,includingthoseoutsideNP.Wesaythatadecisionprob- lem H, not necessarily in NP, satisfying C H for an NP-complete problem C, ≤ is NP-hard. Clearly: NP-complete problems are exactly those NP-hard problems whichareinNP.ButwemightencounteraproblemHforwhichwedonothavethe proofH NP,butstillitmightbepossibletoproveC H.Thenthebadnewsfor ∈ ≤ practiceisagainthesame,thatthe problemH iscomputationallyintractable.(But wemightpossiblyneedevenworsecomputationtimethanforNP-problems;recall thatallproblemsinNPcanbesolvedinexponentialtime,notworse.) Tosummarize:aproofthatadecisionproblemisNP-hardisaweakertheoretical resultthanaproofthatadecisionproblemisNP-complete;itleadstoanimmediate researchproblemtoinspectwhyitisdifficulttoprovethepresenceinNP.Usually, thereasonisthatitisnoteasy(orimpossibleatall)towritedownthe -definition; ∃ recall the example (1.2), where the proof of presence in NP required the aid of Theorem2. Remark. If we are unsuccessful in placing the problem in NP or coNP, being unable to write down the - or -definition, it might be appropriate to place the ∃ ∀ problem H into higher levels of the Polynomial Time Hierarchy, or even higher, suchasthePSPACE-level;fordetailssee[1],Chapter5. 10 JaroslavHora´cˇek,MilanHlad´ıkandMichalCˇerny´ 1.3.7 Functional problems:efficient solvabilityand NP-hardness Functional problems are problems of computing values of general functions, in contrast to decision problems where we expect only YES/NO answers. We also want to classify functional problems from the complexity-theoretic perspective, whether they are “efficiently solvable”, or “intractable”, as we did with decision problems.Efficientsolvabilityofafunctionalproblemisagaingenerallyunderstood as polynomial-timecomputability. To define NP-hardness, we need the following notionofreduction:adecisionproblemAisreducibletoafunctionalproblemF,if thereexistfunctionsg: 0,1 0,1 andh: 0,1 0,1 ,bothcomputable ∗ ∗ ∗ { } →{ } { } →{ } inpolynomialtime,suchthat A(x)=h(F(g(x))) forevery x 0,1 . (1.4) ∗ ∈{ } Theroleofgisanalogousto(1.3):ittranslatesaninstancexofAintoaninstance g(x) of F. What is new here is the function h. Since F is a functional problem, the value F(g(x)) can be an arbitrary bitstring (say, a binary representation of a rationalnumber);thenweneedanotherefficientlycomputablefunctionhtranslating the value F(g(x)) into a 1-0 value giving the YES/NO answer to A(x). A trivial example:decidingregularityofarationalmatrix(decisionproblemA)isreducible tothecomputationofrank(functionalproblemF).Itsufficestodefineg(A)=Aand h(z )=1 min n z ,1 . − { − } Now,afunctionalproblemFisNP-hardifthereisanNP-harddecisionproblem reducibletoF.Forexample,thefunctionalproblemofcountingthenumberofones inthetruth-tableofagivenbooleanformulaisNP-hardsincethisinformationallows ustodecidewhetherornottheformulaissatisfiable. Remark.ItisnotnecessarytodistinguishbetweenNP-hardnessandcoNP- hardnessforfunctionalproblems.We couldalsotryto definecoNP-hardnessof afunctionalproblemGintermsofreducibilityofacoNP-harddecisionproblemC toGvia(1.4).ButthisissuperfluousbecausehereNP-hardnessandcoNP-hardness coincide.Indeed,ifwecanreduceacoNP-hardproblemCtoafunctionalproblem Gvia(g,h),thenwecanalsoreducetheNP-hardproblemcoCtoGvia(g,1 h). − Thus,incaseoffunctionalproblems,wespeakaboutNP-hardnessonly. 1.3.8 Moregeneral reductions:dowe indeed havetodistinguish between NP-hardness andcoNP-hardness ofdecision problems? In literature, the notions of NP-hardness and coNP-hardness are sometimes used quite freely even for decision problems. Sometimes we can read that a decision problemis “NP-hard”,evenif itwouldqualifyasa coNP-hardproblemunderour definition based on the reduction (1.3). This is nothing serious as far as we are aware. It depends how the author understands the notion of a reduction between

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.