ebook img

Intersubband Transitions in Quantum Wells PDF

340 Pages·1992·23.864 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intersubband Transitions in Quantum Wells

Intersubband Transitions in Quantum Wells NATO ASI Series Advanced Science Institute s Series A series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities. The series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division A Life Sciences Plenum Publishing Corporation B Physics New York and London C Mathematical and Physical Sciences Kluwer Academic Publishers D Behavioral and Social Sciences Dordrecht, Boston, and London E Applied Sciences F Computer and Systems Sciences Springer-Verlag G Ecologica l Sciences Berlin, Heidelberg, New York, London, H Cell Biology Paris, Tokyo, Hong Kong, and Barcelona 1 Global Environmenta l Change fiecenf Volumes in this Series Volume 287—Coherence Phenomena in Atoms and Molecules in Laser Fields edited by Andre D. Bandrauk and Stephen C. Wallace Volume 288—Intersubband Transitions in Quantum Wells edited by Emmanuel Rosencher, B0rge Vinter, and Barry Levine Volume 289—Nuclear Shapes and Nuclear Structure at Low Excitation Energies edited by Michel Vergnes, Jocelyne Sauvage, Paul-Henri Heenen, and Hong Tuan Duong Volume 290—Phase Transitions in Liquid Crystals edited by S. Martellucci and A. N. Chester Volume 291—Proton Transfer in Hydrogen-Bonded Systems edited by T. Bountis Volume 292—Microscopic Simulations of Complex Hydrodynamic Phenomena edited by Michel Mareschal and Brad L Holian Volume 293—Methods in Computational Molecular Physics edited by Stephen Wilson and Geerd H. F. Diercksen Volume 294—Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures edited by Hermann Grabert and Michel H. Devoret Series B: Physics Intersubband Transitions in Quantum Wells Edited by Emmanuel Rosencher and B0rge Vinter Thomson-CSF Central Research Laboratory Orsay, France and Barry Levine AT&T Bell Laboratories Murray Hill, New Jersey Springer Science+Business Media, LLC PPrroocceeeeddiinnggss ooff aa NNAATTOO AAddvvaanncceedd RReesseeaarcrhc hW Woorkrksshhopo po no n IInntteerrssuubbbbaanndd TTrraannssiittiioonnss iinn QQuuaannttuumm WWeellllss, , hheelldd SSeepptteemmbbeerr 99--1144,,11999911,, iinn CCaarrggöessee,, FFrraannccee NNAATTOO--PPCCOO--ODAATTAA BBAASSEE TThhee eelleeccttrroonniicc iinnddeexx ttoo tthhee NNAATTOO AASSII SSeerriieess pprroovviiddeess ffuullll bbiibblliiooggrraapphhiiccaall rreelfeerreenncceess ({wwiitthh kkeeyy wwoorrddss aanndd//oorr aabbssttrraaccttss)) ttoo mmoorree tthhaann 3300,,000000 ccoonnttrriibbuuttiioonnss Ifrroomm iinntteerrnnaattiioonnaall sscciieennttiissttss ppUubblliisshheedd iinn aaIlIl sseeccttiioonnss 0o1f tthhee NNAATTOO AASSII SSeerrieiess. . AAcccceessss ttoo tthhee NNAATTOO--PPCCOO--ODAATTAA BBAASSEE iiss ppoossssiibblele iinn ttwwoo wwaayyss:: —-vviiaa oonnlliinnee FFIILLEE 112288 ((NNAATTOO--PPCCOO--ODAATTAA BBAASSEE)) hhoosstteedd bbyy EESSRRIINN, , VViiaa GGaalliileleoo GGaalliilelei,i , 1I--0000004444 FFrraassccaattii,, IIttaallyy.. AAddddiittiioonnaall mmaatteerriiaall ttoo tthhiiss b booookk c caann b bee d doowwnnloloaaddeedd f rforomm h thtptt:pj :j/e/xetxratr.sap.srpinrignegre.cr.ocmom. . LLilbbrraarryy ooff CCoonnggreressss CCaattaa1loogg11nngg-1-lnn--PPuubblIl1ccaattiloonn DDaattaa NNAATTOO AAddvvaanncceedd RReesseeaarrcchh WWoorrkksshhoopp oonn IInntteerrssuubbbbaanndd TTrraannssiittiioonnss iInn QQuuaannttuumm WWeellllss ((11999911 :: CCaarrggeessee,, FFrraannccee)l IInntteerrssuubbbbaanndd ttrraannssiittiioonnss iinn qquuaannttuumm wwelelllss /I eeddiitteedd bbyy EEmmmamnauneulel RRoosseenncchheerr,, ! BBoorrggee1'V Vii nntteerr,. aanndd BBaarrrryy LLeevv i1nn ee.. pp.. ccmm.. -—- ((NNAATTOO AASSII sseerr iieess.. SSeerr iieess BB , PPhhyyssiiccss ;; vv.. 228888)) ""PPrroocceeeeddilnnggss ooff tthhee NNAATTOO AAddvvaanncceedd RReesseeaarrcchh f WWorokrksshhoopp oonn IInntteerrssuubbbbaanndd TTrraannssiittiioonnss iinn QQuuaannttuumm WWelelllss,, hheelldd SSeepptteemmbbere r9 9-1-144,, 11999911,, iinn CCaarrggeessee,, FFrraannccee""—--TT..pp.. vveerrssoo.. ""PPuubblliisshheedd iinn ccooooppeerraatt iioonn wwiitthh NNAATTOO SSccileenntitiffiicc DDivivisisiioonn."." IInncclluuddeess iinnddeexx.. ISBN 978-1-4613-6475-7 ISBN 978-1-4615-3346-7 (eBook) ISBN 978-1-4613-6475-7 ISBN 978-1-4615-3346-7 (eBook) DOI 10.1007/978-1-4615-3346-7 DOI 10.1007/978-1-4615-3346-7 1. Quantum wells--Congresses. 2. Semlconductors--Congresses. 1. Quantum wells—Congresses. 2. Semiconductors—Congresses. 3. Layer structure (Solidsl--Congresses. 4. Oscil1ator strengths- 3. Layer structure (Solids)—Congresses. A. Oscillator strengths- --CCoonngg~reesssseess.. 1I.. RRoosseenncchheerr,, EEmmmmanauneulel,, 11995522-- . IIII.. VVinlnteter,r , BBoorgrgee. . III. Levlne, Barry. IV. North Atlantic Treaty Organization. III. Levine, Barry. IV. North Atlantic Treaty Organization. Scientific Affairs Dlvision. V. Title. VI. Series. Scientific Affairs Division. V. Title. VI. Series. QC176.8.E4N326 1991 QC176.8.E4N326 1991 537.6'22--dc20 92-10016 537.6'22—dc20 92-10016 CCIIPP IISSBBNN 997788--11--44661133--66447755--77 ©© 11999922 SSpprriinnggeerr SScciieennccee++BBuussiinneessss MMeeddiiaa NNeeww YYoorrkk OOrriiggiinnaallllyy ppuubblliisshheedd bbyy PPlleennuumm PPrreessss,, NNeeww Y Yoorrkk iinn 11999922 AAIlIl rriigghhttss rreesseerrvveedd NNoo ppaarrtt ooff tthhiiss bbooookk mmaayy bbee rreepprroodduucceedd,, ssttoorreedd iinn aa rreettrriieevvaall ssyysstteemm,, oorr ttrraannssmmiitttteedd iinn aannyy ffoorrmm oorr bbyy aannyy mmeeaannss,, eelleeccttrroonniicc,, mmeecchhaanniiccaall,, pphhoottooccooppyyiinngg,, mmiiccrroofliillmmiinngg, , rreectoorrddiinngg,, oorr ootthheerrwwiissee,, wwiitthhoouutt wwrriitttteenn ppeerrmmiissssiioonn fIrroomm tthhee PPuubblliisshheerr PREFACE This book contains the lectures delivered at the NATO Advanced Research Workshop on the "Intersubband Transistions in Quantum Wells" held in Cargese, France, between the 9th and the 14th of September 1991. The urge for this Workshop was justified by the impressive growth of work dealing with this subject during the last two or three years. Indeed, thanks to recent progresses of epitaxial growth techniques, such as Molecular Beam Epitaxy, it is now possible to realize semiconductor layers ( e.g. GaAs) with thicknesses controlled within one atomic layer, sandwiched between insulating layers (e.g. AlGaAs). When the semiconducting layer is very thin, i.e. less than 15 nm, the energy of the carriers corresponding to their motion perpendicular to these layers is quantized, forming subbands of allowed energies. Because of the low effective masses in these semiconducting materials, the oscillator strengths corresponding to intersubband transitions are extremely large and quantum optical effects become giant in the 5 - 20 ~ range: photoionization, optical nonlinearities, ... Moreover, a great theoretical surprise is that - thanks to the robustness of the effective mass theory -these quantum wells are a real life materialization of our old text book one-dimensional quantum well ideal. Complex physical phenomena may then be investigated on a simple model system. Three main aspects have emerged from this Workshop: 1 - FUNDAMENTALS OF INTERSUBBAND TRANSmONS When the photons are absorbed in the quantum wells, electrons are transferred on excited states and are scattered, part of them in the insulator conduction band, part of them back on the ground state. Most of the lectures deal with the intersubband relaxation mechanisms, the electric field effects on the photoionization, the many body effects, the transport mechanisms through the other quantum wells. Moreover, papers relating effects in other materials (e.g. SiGe) and in lower dimensionnal systems open the way to new realizations. 2 - OPTICAL NONLINEARmES By using asymmetric aluminum concentration gradients, it is possible to obtain giant optical nonlinearities. These structures behave much the same as giant "quasi-molecules" optimized in the infrared range. The basic physics of resonnant optical nonlinearities has been addressed, with application to modulators, switches, optical rectifiers, second harmonic generation. The possibility of obtaining lasing action in intersubband transitions has also been addressed. 3 - DETECTION DEVICES Impressive realizations have been presented, such as the videotape realized by the Bell Lab group with their 128 x 128 quantum well arrays coupled to a silicon read-out circuit. v Though a very new subject, intersubband transitions seem to lead to one of the major industrial application to quantum wells, together with quantum well lasers. Various other aspects have been adressed, such as the limit detectivities, the role of injection mechanisms at the contacts, the optimization of device parameters and grating couplers ... I believe that every participant would agree that this Workshop has been a success, thanks to the scientific involvement of all the scientists present here, the thrilling scope of this subject and the beauty of the Corsican coast. We gratefully acknowledge the generous support of the NATO Scientific Affairs Division, the Centre National d'Etudes des TcHecommunications(CNET), the Division de Recherches et d'Etudes Techniques (DRET) and Thomson-CSF. Moreover, the Workshop would not have been such a success without the skillful help of the team of the Institut d'Etudes Scientifiques de Cargese, particularly Marie-France Hanseler, and the competence, willingness and efficiency of Brigitte Marchalot, the secretary of this Workshop. Emmanuel Rosencher Laboratoire Central de Recherches, Thomson-CSF Orsay ( France) vi CONTENTS DETECTION Coupling of Radiation into Quantum Well Infrared Detectors by the Use of Reflection Gratings and Waveguide Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 J. Y. Andersson and L. Lundqvist Fundamental Limits in Quantum Well Intersubband Detection . . . . . . . . . . . . . . . . 15 I. Grave and A. Yariv Perfonnance Trade Offs in the Quantum Well Infra-Red Detector . . . . . . . . . . . . . . 31 M. J. Kane, S. Millidge, M. T. Emeny, D. Lee, D. R. P. Guy, and C. R. Whitehouse Recent Progress in Quantum Well Infrared Photodetectors .................. 43 B. F. Levine Effects of the Upper State Position and the Number of Wells on the Perfonnance of Intersubband Quantum Well Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 H. C. Liu, A. G. Steele, M. Buchanan, and Z. R. Wasilewski Intersubband Transition and Electron Transport in Potential-Inserted Quantum Well Structures and their Potentials for Infrared Photodetector. . . . . . . . . . . . . . . 65 H. Sakaki, H. Sugawara, J. Motohisa, and T. Noda Photovoltaic Intersubband Photodetectors Using GaAs Quantum Wells Confined by AlAs Tunnel Baniers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 H. Schneider, K. Kheng, F. Fuchs, J. D. Ralston, B. Dischier, and P. Koidl Photon Drag IR-Detectors -the Doppler Effect in the Intersubband Resonance of 2-D Electron SysteIl1S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 H. Sigg Application of Multiple Quantum-Well Infrared Detectors to Present and Future Infrared Sensor SysteIl1S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 R. L. Whitney, F. W. Adams, and K. F. Cuff LOW·DIMENSION EFFECTS Phonon Scattering and Relaxation Properties of Lower Dimensional Electron Gases. 105 U. Bockelmann Spectroscopy of Quantum-Dot Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 D. Heitmann, B. Meurer, T. Demel, P. Grambow, and K. Ploog vii NONLINEAR OPTICS Electron Transfer Infrared Modulator (ETIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 V. Berger, N. Vodjdani, B. Vinter, D. Delacourt, E. Dupont, E. Costard, D. Papillon, E. Bockenhoff, and J. P. Schnell Nonlinear Optics of Intersubband Transitions in A1InAs/GalnAs Coupled Quantum Wells: . . . . . . . .. Second Harmonic Generation and Resonant Stark Tuning of xi~ 141 F. Capasso, C. Sirtori, D. Sivco, and A. Y. Cho Far-Infrared Emission and Absorption Spectroscopy of Quantum Wells and Superlattices ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 M.Helm Room-Temperature Photo-Induced Intersubband Absorption in GaAs/AlGaAs Quantum Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 F. H. Julien Second Harmonic Generation in Asymmetric AlGaAS Quantum Wells. . . . . . . . . .. 173 F. H. Julien Model System for Optical Nonlinearities: Asymmetric Quantum Wells. . . . . . . . . .. 183 E. Rosencher and P. Bois Third Order Intersubband Kerr Effect in GaAs/AlGaAs Quantum Wells. . . . . . . . .. 197 A. Sa'ar, N. Kuze, J. Feng, I. Grave, and A. Yariv Optical Bistability Related to Intersubband Absorption in Asymmetric Quantum Wells 209 M. Seto and M. Helm Feasibility of Optically-Pumped Four-Level Infrared Lasers ................. 219 G. Sun and J. B. Khurgin Quantum Well Engineering for Intersubband Transitions -General Conduction Band Extrema and Valence Valley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 K. L. Wang, S. K. Chun, and R. P. G. Karunasiri OTHER QUANTUM SYSTEMS Internal Photoemission of Asymmetrical Pt/Si/ErSi1.7 Heterostructures with Tunable Cutoff Wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 243 P. A. Badoz, L. Pahun, Y. Campidelli, and F. Arnaud d'Avitaya Intersubband Absorption in the Conduction Band of Si/Si Ge. l_. Multiple Quantum Wells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 H. Hertle, F. Schiiffler, A. Zrenner, E. Gornik:, and G. Abstreiter PHYSICS OF INTERSUBBAND TRANSITIONS Inelastic Light Scattering of Electronic Excitations in Quantum Wells ........... 261 G. Abstreiter Photo-Induced Intersubband Transitions in Quantum Wells ....... ~ . . . . . . . . . . 263 E. Cohen, E. Ehrenfreund, Y. Garini, M. Olszakier, and A. Ron Subpicosecond Luminescence Study of Capture and Intersubband Relaxation in Quantum Wells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 275 B. Deveaud, A. Chomette, F. Clerot, and A. Regreny viii futersubband Infrared Absorption in a GaAS/Alo.3Gao.7As Multiple Quantum Well. . 287 M. O. Manasreh, F. Szmulowicz, T. Vaughan, K. R. Evans, C. E. Stutz, and D. W. Fischer Electric Field Effects on Bound to Quasibound futersubband Absorption and Photocurrent in GaAs/AlGaAs Quantum Wells .................. 299 E. Martinet, F. Luc, E. Rosencher, P. Bois, E. Costard, S. Delaitre, and E. BOckenhoff futersubband Relaxation in Modulation Doped Quantum Well Structures . . . . . . . . . 309 U. Plodereder, T. Dahinten, A. Seilmeier, and G. Weimann Theory of Optical futersubband Transitions ............................ 319 A. Shik Bound to Free State fufrared Absorption and Selection Rules in Quantum Wells. . . . 329 B. Vinter and L. Thibaudeau Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 fudex ..................................................... 343 ix COUPLING OF RADIATION INTO QUANTUM WELL INFRARED DETECTORS BY THE USE OF REFLECTION GRATINGS AND WAVEGUIDE STRUCTURES J. Y. Andersson and L. Lundqvist Swedish Institute of Microelectronics P. O. Box 1084, S - 164 21 Kista, Sweden INTRODUCTION Long wavelength infrared detectors based on intersubband transitions in AIGaAs/GaAs n-type doped quantum wells (QW) have been shown to exhibit high detectivities D* = 1·101 0 - 10 O.S -1. th I th' t 5·10 cm·Hz 'W l.n e wave eng regl.on 8 - 10 /.lm a 80 K, and are viable candidates for the fabrication of large linear and two-dimensional detector arrays1,2. Detectors with QWs of other material compositions like InAIAs/InGaAs and InGaAs/InP, have also been fabricated and show great promise. The QW infrared detector is basically of the photoconductive type, although detectors working in the photovoltaic mode have been demonstrated3,4. For detector arrays the response uniformity across the array is usually the most critical parameter with values of 1 % - 2 % obtained for the AIGaAs/GaAs QW detectorS,B. These excellent values are a result of the well developed growth and processing technology of GaAs. In addition, due to the large band-gap, the material properties of gallium arsenide are outstanding, with a superb heat and radiation hardness, which is in sharp contrast to the sensitivity to heat treatment of small band-gap intrinsic detector materials (e. g. InSb and HgCdTe) . However, besides uniformity other requirements of detec tors elements in arrays are a sufficiently high detectivity D* , and back-ground photon noise limited operation (BLIP). BLIP operation will result in lowest possible dark current. A high dark current, besides being the source of noise, tends to saturate charge coupled device (CCD) circuitry if used as read-out. A large quantum efficiency ~ is a prerequisite for ob taining high responsivities, detectivities and to attain BLIP operation at sufficiently high detector temperatures. This lntersubband Transitions in Quantum Wells Edited by E. Rosencher et aI .• Plenum Press, New York, 1992

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.